Let q be a prime and A an elementary abelian q-group acting as a coprime group of automorphisms on a profinite group G. We show that if A is of order q^2 and some power of each element in C_G(a) is Engel in G for any a ∈ A^#, then G is locally virtually nilpotent. Assuming that A is of order q^3, we prove that if some power of each element in C_G(a) is Engel in C_G(a) for any a ∈ A^#, then G is locally virtually nilpotent. Some analogues of quantitative nature for finite groups are also obtained.

Engel-like conditions in fixed points of automorphisms of profinite groups / Acciarri, C; Silveira, D. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 199:1(2020), pp. 187-197. [10.1007/s10231-019-00872-7]

Engel-like conditions in fixed points of automorphisms of profinite groups

Acciarri C;
2020

Abstract

Let q be a prime and A an elementary abelian q-group acting as a coprime group of automorphisms on a profinite group G. We show that if A is of order q^2 and some power of each element in C_G(a) is Engel in G for any a ∈ A^#, then G is locally virtually nilpotent. Assuming that A is of order q^3, we prove that if some power of each element in C_G(a) is Engel in C_G(a) for any a ∈ A^#, then G is locally virtually nilpotent. Some analogues of quantitative nature for finite groups are also obtained.
2020
199
1
187
197
Engel-like conditions in fixed points of automorphisms of profinite groups / Acciarri, C; Silveira, D. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 199:1(2020), pp. 187-197. [10.1007/s10231-019-00872-7]
Acciarri, C; Silveira, D
File in questo prodotto:
File Dimensione Formato  
Acciarri-Silveira2020_Article_Engel-likeConditionsInFixedPoi.pdf

Open access

Descrizione: articolo principale
Tipologia: Versione pubblicata dall'editore
Dimensione 298.27 kB
Formato Adobe PDF
298.27 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1255526
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact