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Abstract
Let q be a prime and A an elementary abelian q-group acting as a coprime group of auto-
morphisms on a profinite group G. We show that if A is of order q2 and some power of
each element in CG(a) is Engel in G for any a ∈ A#, then G is locally virtually nilpotent.
Assuming that A is of order q3, we prove that if some power of each element in CG(a) is
Engel in CG(a) for any a ∈ A#, then G is locally virtually nilpotent. Some analogues of
quantitative nature for finite groups are also obtained.
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1 Introduction

A profinite group is a topological group that is isomorphic to an inverse limit of finite groups.
In the context of profinite groups, all the usual concepts of group theory are interpreted
topologically. In particular, by a subgroup of a profinite group we always mean a closed
subgroup and a subgroup is said to be generated by a set S if it is topologically generated by
S. See, for example, [24] for these and other properties of profinite groups. Many remarkable
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results on profinite groups were deduced using the Lie-theoretical machinery developed
for the solution of the restricted Burnside problem [26,27,29]. For instance, using Wilson’s
reduction theorem [23], Zelmanov proved that a profinite group is locally finite if and only if
it is torsion [28]. Recall that a group G is said to have a certain property locally if any finitely
generated subgroup of G possesses that property. We say that a group G is torsion if all of
its elements have finite order.

Anotherwell-known result ofWilson andZelmanov [25,Theorem5] tells us that a profinite
group is locally nilpotent if and only if it is Engel. If x, y are elements of a (possibly infinite)
group G, the commutators [x,n y] are defined inductively by the rule

[x,0 y] = x, [x,n y] = [[x,n−1 y], y] for all n ≥ 1.

Recall that an element x is called a (left) Engel element if for any g ∈ G there exists n,
depending on x and g, such that [g,n x] = 1. A group G is called Engel if all elements of
G are Engel. The element x is called a (left) n-Engel element if for any g ∈ G we have
[g,n x] = 1. The group G is n-Engel if all elements of G are n-Engel.

Later on, in [4], Bastos and Shumyatsky considered profinite groups with Engel-like
conditions. They showed in [4, Theorem 1.1] that if G is a profinite group in which for every
element x ∈ G there exists a natural number q = q(x) such that xq is Engel, then G is
locally virtually nilpotent. We recall that a profinite group posses a certain property virtually
if it has an open subgroup with that property. Note that the previous result can be viewed
as a common generalization of both the Wilson–Zelmanov results on profinite groups stated
above.

By an automorphism of a profinite group, we mean a continuous automorphism. We say
that a group A acts on a profinite group G coprimely if A has finite order, while G is an
inverse limit of finite groups whose orders are relatively prime to the order of A. In the
literature, there are many well-known results showing that if A is a finite group acting on
a finite group G in such a manner that (|A|, |G|) = 1, then the structure of the centralizer
CG(A) (the fixed-point subgroup) of A has a strong influence over the structure ofG (see, for
instance, [2,10,21,22]). A similar phenomenon holds in the realm of profinite groups: We see
that imposing restrictions on centralizers of coprime automorphisms result in very specific
structures for the group G. Given an automorphism a of a profinite group G, we denote by
CG(a) the centralizer of a in G, that is, the subgroup formed by the elements fixed under a.
In particular, the following theorems were established in [20, Theorem 1.1] and [2, Theorem
B2], respectively.

Theorem 1 Let q be a prime and A an elementary abelian q-group of order at least q2

acting coprimely on a profinite group G. Assume that the centralizer CG(a) is torsion for
each a ∈ A#. Then G is locally finite.

Theorem 2 Let q be a prime and A be an elementary abelian q-group of order at least q2

acting coprimely on a profinite group G. Assume that all elements in CG(a) are Engel in G
for each a ∈ A#. Then G is locally nilpotent.

Here and throughout the paper, A# denotes the set of nontrivial elements of A. The proofs
of the above results involve a number of deep ideas. In particular, Lie-theoretical results of
Zelmanov [26,27,29] obtained in his solution of the restrictedBurnside problemare combined
with a criteria for a pro-p group to be p-adic analytic in terms of the associated Lie algebra
due to Lazard [12], and a theorem of Bahturin and Zaicev [3] on Lie algebras admitting a
soluble group of automorphismswhose fixed-point subalgebra satisfies a polynomial identity.
Moreover, Theorems 1 and 2 rely heavily on Zelmanov’s theorem about local finiteness of
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torsion profinite groups and on the Wilson–Zelmanov result on local nilpotency of Engel
profinite groups, respectively.

In the present paper, we consider profinite groups admitting an action by an elementary
abelian group under which the centralizers of automorphisms satisfy the property that some
power of any element is Engel. In this context of profinite groups, by some power of any
element in the centralizers we mean that, for every element x in the centralizers, there exists
a natural number n = n(x) such that xn is an Engel element. Our first goal is to establish the
following result.

Theorem 3 Let q be a prime and A an elementary abelian group of order q2. Suppose that
A acts coprimely on a profinite group G and assume that some power of each element in
CG(a) is Engel in G for any a ∈ A#. Then G is locally virtually nilpotent.

Using Theorem 3 in combination with the positive solution of the restricted Burnside
problem [26,27,29], the following quantitative result for finite groups can be obtained.

Corollary 1 Let m, d be integers, q a prime and A an elementary abelian group of order
q2. Suppose that A acts coprimely on a m-generated finite group G and assume that all dth
powers of elements in CG(a) are n-Engel in G for each a ∈ A#. Then there exist positive
integers e and c, depending only on m, n, q and d, such that G has a normal subgroup N
with nilpotency class at most c and |G/N | is at most e.

If, in Theorem 2, we relax the hypothesis that every element of CG(a) is Engel in G and
require instead that every element of CG(a) is Engel in CG(a), we see that the result is no
longer true. Indeed, an example of a finite nonnilpotent group G admitting an action of a
noncyclic group A of order four such that CG(a) is abelian for each a ∈ A# can be found
for instance in [1]. On the other hand, in [1], the authors proved that if A is an elementary
abelian q-group of order at least q3, with q a prime, acting coprimely on a profinite group G
in such a manner that CG(a) is locally nilpotent for each a ∈ A#, then G is locally nilpotent.
Another purpose of the present paper is to establish the following related result.

Theorem 4 Let q be a prime and A an elementary abelian group of order q3. Suppose that
A acts coprimely on a profinite group G and assume that some power of each element in
CG(a) is Engel in CG(a) for any a ∈ A#. Then G is locally virtually nilpotent.

Our next result is an analogue of Corollary 1.

Corollary 2 Let m, d be integers, q a prime and A an elementary abelian group of order
q3. Suppose that A acts coprimely on a m-generated finite group G and assume that all dth
powers of elements in CG(a) are n-Engel in CG(a) for each a ∈ A#. Then there exist positive
integers e and c, depending only on m, n, q and d, such that G has a normal subgroup N
with nilpotency class at most c and |G/N | is at most e.

The paper is organized as follows. In Sect. 2, we present the Lie-theoretical machinery
that will be useful within the proofs. Section 3 is devoted to proving Theorem 3 and Corollary
1, and in the last section, we establish Theorem 4 and Corollary 2.

The notation is standard. Throughout the paper, we use, without special references, the
following well-known properties of coprime actions (see, for example, [18, Lemma 3.2]).

If α is a coprime automorphism of a profinite group G, then CG/N (α) = CG(α)N/N for
any α-invariant normal subgroup N .

If A is a noncyclic elementary abelian group acting coprimely on a profinite group G,
then G is generated by the subgroups CG(B), where A/B is cyclic.
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2 Associated Lie algebras

Let L be a Lie algebra over a field K and X a subset of L . By a commutator in elements of
X , we mean any element of L that can be obtained as a Lie product of elements of X with
some system of brackets. If x1, . . . , xk, x, y are elements of L , we define inductively

[x1] = x1; [x1, . . . , xk] = [[x1, . . . , xk−1], xk]
and [x,0 y] = x; [x,m y] = [[x,m−1 y], y], for all positive integers k,m. As usual, we say that
an element a ∈ L is ad-nilpotent if there exists a positive integer n such that [x,n a] = 0 for
all x ∈ L . If n is the least integer with the above property, then we say that a is ad-nilpotent
of index n. Denote by F the free Lie algebra over K on countably many free generators
x1, x2, . . .. Let f = f (x1, x2, . . . , xn) be a nonzero element of F . The algebra L is said to
satisfy the identity f = 0 if f (l1, l2, . . . , ln) = 0 for any l1, l2, . . . , ln ∈ L . In this case, we
say also that L satisfies a PI (polynomial identity) or that L is a PI-algebra.

The next theorem represents the most general form of the Lie-theoretical part of the
solution of the restrictedBurnside problem. It was announced byZelmanov in [27]. A detailed
proof can be found in [29].

Theorem 5 Let L be a Lie algebra over a field and suppose that L satisfies a PI. If L can be
generated by a finite set X such that every commutator in elements of X is ad-nilpotent, then
L is nilpotent.

An important criterion for a Lie algebra to satisfy a PI is provided by the next theorem,
which was proved by Bahturin and Zaicev for soluble groups of automorphisms [3] and later
extended by Linchenko to the general case [13].

Theorem 6 Let L be a Lie algebra over a field K . Assume that a finite group A acts on
L by automorphisms in such a manner that CL(A) satisfies a PI. Assume further that the
characteristic of K is either 0 or prime to the order of A. Then L satisfies a PI.

We use the centralizer notation for the fixed-point subalgebra CL(A) of a group of automor-
phisms A of L .

Another useful result, whose proof can be found in [10, Lemma 5], is the following.

Lemma 1 Let L be a Lie algebra and H a subalgebra of L generated by m elements
h1, . . . , hm such that all commutators in the generators hi are ad-nilpotent in L. If H is
nilpotent, then we have [L, H , . . . , H

︸ ︷︷ ︸

u

] = 0 for some number u.

Let G be a (profinite) group. A series of subgroups

G = G1 ≥ G2 ≥ . . . (*)

is called an N -series if it satisfies [Gi ,G j ] ≤ Gi+ j for all i, j ≥ 1. Here and throughout the
paper, when dealing with a profinite group we consider only closed subgroups. Obviously
any N -series is central, i.e. Gi/Gi+1 ≤ Z(G/Gi+1) for any i . Let p be a prime. An N -series
is called Np-series if G

p
i ≤ Gpi for all i . Given an N -series (∗), let L∗(G) be the direct

sum of the abelian groups L∗
i = Gi/Gi+1, written additively. Commutation in G induces a

binary operation [, ] in L∗(G). For homogeneous elements xGi+1 ∈ L∗
i , yG j+1 ∈ L∗

j , the
operation is defined by

[xGi+1, yG j+1] = [x, y]Gi+ j+1 ∈ L∗
i+ j
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and extended to arbitrary elements of L∗(G) by linearity. It is easy to check that the operation
is well defined and that L∗(G) with the operations + and [, ] is a Lie ring. If all quotients
Gi/Gi+1 of an N -series (∗) have prime exponent p, then L∗(G) can be viewed as a Lie
algebra over Fp , the field with p elements. In the important case where the series (∗) is the
p-dimensional central series (also known under the name of Zassenhaus–Jennings–Lazard
series) of G, we write Di = Di (G) for the i th term of the series of G, L(G) for the
corresponding associated Lie algebra over the field with p elements and L p(G) for the
subalgebra generated by the first homogeneous component D1/D2 in L(G). Observe that
the p-dimensional central series is an Np-series (see [8, p. 250] for details).

Any automorphism of G induces naturally an automorphism of L∗(G). If G is profinite
and α is a coprime automorphism of G, then the subalgebra of fixed points of α in L∗(G)

is isomorphic to the Lie algebra associated with the group CG(α) via the series formed by
intersections of CG(α) with the terms of the series (∗) (see [19] for more details).

Given an Np-series (∗) of G, let x ∈ G and let i = i(x) be the largest positive integer
such that x ∈ Gi . We denote by x∗ the element xGi+1 ∈ L∗(G). We now quote some results
providing sufficient conditions for x∗ to be ad-nilpotent. The first lemma is due to Lazard
(see [11, p. 131]).

Lemma 2 For any x ∈ G, we have (adx∗)p = ad(x p)∗. In particular, if x is of finite order
t , then x∗ is ad-nilpotent of index at most t .

The next result essentially is due to Wilson and Zelmanov since it follows from the proof
of [25, Lemma in Section 3].

Lemma 3 Let x be an Engel element of a profinite group G. Then x∗ is ad-nilpotent.

Combining Lemmas 2 and 3, it is easy to deduce the following result.

Lemma 4 Let x be an element of a profinite group G for which there exists a positive integer
d such that xd is Engel. Then x∗ is ad-nilpotent.

A group G is said to satisfy a coset identity if there is a nontrivial group word w =
w(x1, x2, . . . , xk) and cosets g1H , g2H , . . . , gk H of a subgroup H of G of finite index such
that w(g1h1, g2h2, . . . , gkhk) = 1 for all h1, h2, . . . , hk ∈ H ; in this case, we can also say
that the laww ≡ 1 is satisfied on the cosets g1H , g2H , . . . , gk H . In [25, Theorem 1],Wilson
and Zelmanov proved the following theorem.

Theorem 7 If a profinite group G has an open subgroup H and elements g1, . . . , gk such
that a law w ≡ 1 is satisfied on the cosets a1H , . . . , ak H, then for each prime p the Lie
algebra L p(G) satisfies a PI.

3 Proof of Theorem 3 and Corollary 1

We start this section by proving the following useful result.

Lemma 5 Let p be a prime. Suppose that a finite group A acts coprimely on a profinite group
G. Assume that some power of each element in CG(A) is Engel in CG(A) for any a ∈ A#.
Then L p(G) satisfies a multilinear polynomial identity.

Proof Let L = L p(G). In view of Theorem 6, it is sufficient to show that CL(A) satisfies a
polynomial identity. We know that CL(A) is isomorphic to the Lie algebra associated with
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the central series of CG(A) obtained by intersecting CG(A) with the p-dimensional central
series of G. For each pair i, j of positive integers, we set

Si j = {(g, h) ∈ CG(A) × CG(A) : [g,i h j ] = 1}.
Since the sets Si j are closed inCG(A)×CG(A) and their union isCG(A)×CG(A), by Baire’s
category theorem [9, p. 200] at least one of these sets has a nonempty interior. Therefore, we
can find an open subgroup H in CG(A), elements u, v ∈ CG(A) and integers n, d such that
the identity [x,n yd ] ≡ 1 is satisfied on the cosets uH , vH . Thus, Theorem 7 applies and
CL(A) satisfies a polynomial identity, as desired. ��

Next, we will prove Theorem 3 under the additional hypothesis that G is a pro-p group.

Proposition 1 Let G be a pro-p group satisfying the hypothesis of Theorem 3. Then G is
locally virtually nilpotent.

Proof Since every finite subset of G is contained in a finitely generated A-invariant closed
subgroup, we may assume that G is finitely generated. Then, of course, it will be sufficient
to show that G is virtually nilpotent.

Let H be the subgroup generated by all Engel elements in G. Note that H is a normal
A-invariant subgroup of G. Thus, for each a ∈ A#, we have CG/H (a) = CG(a)H/H , which
is a torsion subgroup. By Theorem 1, G/H is finite, and so, H is open. Since G is finitely
generated, [24, Proposition 4.3.1] implies that H is finitely generated, as well. We claim that
H is nilpotent.

Indeed, we denote by Dj = Dj (H) the terms of the p-dimensional central series of H .
Let L = L p(H) be the Lie algebra associated with the group H and L j = L ∩ (Dj/Dj+1).
Thus, L = ⊕ j≥1L j . The group A naturally acts on L . Let A1, . . . , Aq+1 be the distinct
maximal subgroups of A. Set Li j = CL j (Ai ). We know that any A-invariant subgroup is
generated by the centralizers of Ai . Therefore, for any j we have

L j =
q+1
∑

i=1

Li j .

Further, for any l ∈ Li j there exists an element x ∈ Dj ∩ CH (Ai ) such that l = xD j+1.
Hence, there exists a positive integer d such that xd is Engel in H . It follows from Lemma 4
that l is ad-nilpotent in L . Thus,

any element in Li j is ad-nilpotent in L. (1)

Let ω be a primitive qth root of unity and L = L ⊗ Fp[ω]. Here Fp stands for the field
with p elements. We can view L both as a Lie algebra over Fp and as that over Fp[ω]. It is
natural to identity L with the subalgebra L ⊗ 1 of L . We note that if an element x ∈ L is
ad-nilpotent of index r , say, then the correspondent element x ⊗ 1 is ad-nilpotent in L of the
same index r .

Put L j = L j ⊗ Fp[ω]. Then L = 〈

L1
〉

and L is the direct sum of the homogeneous
components L j . The group A naturally acts on L , and we have Li j = CL j

(Ai ), where

Li j = Li j ⊗ Fp[ω]. Let us show that

any element y ∈ Li j is ad-nilpotent in L. (2)

Since Li j = Li j ⊗ Fp[ω], we can write
y = x0 + ωx1 + ω2x2 · · · + ωq−2xq−2
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for suitable x0, x1, x2, . . . , xq−2 ∈ Li j . In view of (1), it is easy to see that each of
the summands ωs xs is ad-nilpotent in L . Let J be the subalgebra of L generated by x0,
ωx1, ω2x2, . . . , ωq−2xq−2. We wish to show that J is nilpotent.

Note that J ⊆ CL(Ai ). A commutator of weight t in the generators of J has form ωαx
for some x that belongs to Lim , where m = t j . By (1), the element x is ad-nilpotent in
L , and so, such a commutator must be ad-nilpotent. By Lemma 5, L satisfies a multilinear
polynomial identity. The multilinear identity is also satisfied in L , and so, it is satisfied in J ,
since J ⊆ CL(Ai ). Hence, by Theorem 5 J is nilpotent. Now, applying Lemma 1, we get
that there exists some positive integer u such that [L, J , . . . , J

︸ ︷︷ ︸

u

] = 0. This proves (2).

Since A is abelian and the ground field is now a splitting field for A, every component L j

decomposes in the direct sum of common eigenspaces for A. In particular, L1 is spanned by
finitelymany common eigenvectors for A, since H is a finitely generated pro-p group. Hence,
L is generated by finitely many common eigenvectors for A from L1. Since A is noncyclic,
every common eigenvector is contained in the centralizer CL(Ai ) for some i ≤ q + 1.

We also note that any commutator in common eigenvectors is again a common eigenvector
for A. Therefore, if l1, l2, . . . ∈ L1 are common eigenvectors for A generating L , then any
commutator in those generators belongs to some Li j and so, by (2), is ad-nilpotent.

As we have mentioned earlier, L satisfies a polynomial identity. It follows from Theorem
5 that L is nilpotent. Since L embeds into L , we deduce that L is nilpotent as well.

According to Lazard [12], the nilpotency of L is equivalent to H being p-adic analytic (for
details see [12, A.1 in Appendices and Sections 3.1 and 3.4 in Ch. III] or [6, 1.(k) and 1.(o) in
Interlude A]). It follows from [6, 7.19 Theorem] that H admits a faithful linear representation
over the field of p-adic numbers.

Since H is a finitely generated pro-p group and can be generated by Engel elements, by
using an inverse limit argument combinedwith the Burnside basis theorem [17, 5.3.2], we see
that H is generated by finitely many Engel elements. A result of Gruenberg [7, Theorem 0]
says that in a linear group the Hirsch–Plotkin radical coincides with the set of Engel elements.
Then it follows that H is nilpotent, as claimed. This concludes the proof. ��

As usual, for a profinite groupG we denote by π(G) the set of prime divisors of the orders
of finite continuous homomorphic images of G. We say that G is a π-group if π(G) ⊆ π

and G is a π ′-group if π(G) ∩ π = ∅. If m is an integer, we denote by π(m) the set of prime
divisors of m. If π is a set of primes, we denote by Oπ (G) the maximal normal π-subgroup
of G and by Oπ ′(G) the maximal normal π ′-subgroup.

Now, we are ready to deal with the proof of Theorem 3.

Proof of Theorem 3 It will be convenient first to prove the theorem under the additional
hypothesis that G is pronilpotent. Therefore, G is the Cartesian product of its Sylow sub-
groups. Choose a ∈ A#. For each pair i, j of positive integers, we set

Si j = {(x, y) ∈ G × CG(a) : [x,i y j ] = 1}.
Arguing as in the proof of Lemma 5, we deduce that there exist an open normal subgroup H
in G, elements u ∈ G, v ∈ CG(a) and positive integers n, d such that [ul,n (vk)d ] = 1 for
any l ∈ H and any k ∈ H ∩ CG(a).

Let [G : H ] = m and let π1 = π(m) be the set of primes dividing m. Denote Oπ ′
1
(G) by

K and write J for the Sylow subgroups of G corresponding to the primes that belong to π1.
Since G = J × K = J H , we deduce that [x,n yd ] = 1, for all x ∈ K and y ∈ CK (a). Now
set π2 = π(d) and π = π1 ∪π2. Denote Oπ ′(G) by T . Since by construction (p, d) = 1 for
each prime p ∈ π(T ), it follows that every element y in CT (a) is n-Engel in T .
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Of course, the set π and the integer n depend only on the choice of a ∈ A#, so strictly
speaking they should be denoted by πa and na , respectively. We choose such πa and na for
any a ∈ A#. Set π0 = ∪a∈A#πa , n = max{na : a ∈ A#} and R = Oπ ′

0
(G).

By construction, we see that, for each a ∈ A#, every element of CR(a) is n-Engel in R.
Using an inverse limit argument, we deduce from [22, Theorem 1.2] that R is s-Engel for
some integer s. Thus, [25, Theorem 5] implies that R is locally nilpotent. Let p1, . . . , pr be
the finitely many primes in π and P1, . . . , Pr be the corresponding Sylow subgroups of G.
Then G = P1 × . . . × Pr × R, and therefore, it is sufficient to show that each subgroup Pi is
locally virtually nilpotent. But, this is immediate from Proposition 1. This proves the result
in the particular case where G is pronilpotent.

Let us now drop the assumption that G is pronilpotent. Without loss of generality, we can
assume that G is finitely generated. Set K be the closure of the subgroup of G generated by
all Engel elements in G. Note that K is a normal A-invariant subgroup. Since CG/K (a) =
CG(a)K/K , for any a ∈ A#, in particular we know that each centralizer is torsion. Now
Theorem 1 implies that G/K is finite, and therefore, K is finitely generated. By Baer’s
Theorem [17, 12.3.7], we deduce that K is a pronilpotent group. Hence, using what we
showed above, we conclude that K is virtually nilpotent and this completes the proof. ��

We close this section by giving the proof of Corollary 1.

Proof of Corollary 1 Suppose that the corollary is false. Then, for each pair of positive integers
i, j , we can choose a group Gi j satisfying the hypothesis of the corollary and having all of
its normal subgroups either with nilpotency class at least i or with index in Gi j at least j (or

both properties). In each group Gi j , we fix generators gi j1 , . . . , gi jm .
Let G be the Cartesian product of the groups Gi j , assuming that we use the lexicographic

order to construct the Cartesian product. Note that G is a profinite group admitting a coprime
action of A and such that all dth power of elements in CG(a) are n-Engel in G for each
a ∈ A#. Thus, by Theorem 3, G is locally virtually nilpotent.

In G, consider the closed subgroup D generated by m elements

g1 = (g111 , g121 , . . .), . . . , gm = (g11m , g12m , . . .).

Thus, D has a open nilpotent normal subgroup K of class c, say. Let r be the index of K in
D and observe that both c and r are numbers that depend only on m, n, q and d . We remark
that each of the groups Gi j is isomorphic to a finite quotient of D. Thus, each subgroup Gr

i j
is nilpotent of class at most c. Furthermore, by the positive solution of the restricted Burnside
problem [26,27,29], we know the index of Gr

i j in Gi j depends only on m and r . This leads
to a contradiction. ��

4 Proof of Theorem 4 and Corollary 2

Let F denote the free group on free generators x1, x2, . . .. Recall that a positive word in
X = {x1, x2, . . .} is any nontrivial element of F not involving the inverses of the xi . A
positive (or semigroup) law of a group G is a nontrivial identity of the form u ≡ v where
u, v are positive words in F , holding under every substitution of elements of X by elements
of G. The maximum of lengths of u and v is called the degree of the law u ≡ v.

By a result ofMal’cev [15] (see also [16]), a group that is an extension of a nilpotent group
by a group of finite exponent satisfies a positive law. More precisely, Mal’cev discovered a
positive law Mc(x, y) in two variables and of degree 2c that holds in any nilpotent group of
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Engel-like conditions in fixed points of automorphisms... 195

class c. Therefore, if G is an extension of a nilpotent group of class c by a group of exponent
e, then G satisfies the positive law Mc(xe, ye). The explicit form of the Mal’cev law will not
be required in this paper.

Next result is a profinite version of [21, Theorem A].

Lemma 6 Let q be a prime and A an elementary abelian group of order q3. Suppose that
A acts coprimely on a profinite group G and assume that CG(a) satisfies a positive law of
degree n for each a ∈ A#. Then G satisfies a positive law as well.

Proof The result follows easily by using an inverse limit argument and noting that, by the
proof of [21, TheoremA], any finite quotient ofG over an A-invariant open normal subgroup
N satisfies the positive lawMc(xk, yk), for somepositive integers c and kwhich donot depend
on the choice of N but only on n and q . ��
We are ready to embark on the proof of Theorem 4. First we consider the case where G is a
pro-p group.

Proposition 2 Let G be a pro-p group satisfying the hypothesis of Theorem 4. Then G is
locally virtually nilpotent.

Proof Since every finite set of G is contained in a finitely generated A-invariant closed
subgroup, we may assume that G is finitely generated. It will be sufficient to show that G is
virtually nilpotent.

We denote by Dj = Dj (G) the terms of the p-dimensional central series of G. Let
L = L p(G) be the Lie algebra associated with the group G and L j = L ∩ (Dj/Dj+1).
Thus, L = ⊕ j≥1L j . The group A naturally acts on L . Let A1, . . . , As be the distinct maximal
subgroups of A. Since each subgroup Ai is noncyclic we get L = ∑

a∈Ai
CL(a), for every

i ≤ s. Set Li j = CL j (Ai ). Hence, for any j we get

L j =
s

∑

i=1

Li j .

Thus, for any l ∈ Li j there exists an element x ∈ Dj ∩ CG(Ai ) such that l = xD j+1. By
assumption, some power of x is Engel in CG(Ai ) ⊆ CG(a), for some a ∈ Ai . It follows
from Lemma 4 that l is ad-nilpotent in CL(a) for every a ∈ A#

i . Since L = ∑

a∈Ai
CL(a),

we deduce that any element l ∈ Li j is ad-nilpotent in L . Now, mimicking the argument that
we used in the proof of Proposition 1, with only obvious changes, one can show that L is
nilpotent. We omit further details.

According to Lazard [12], the nilpotency of L is equivalent to G being p-adic analytic.
The Lubotzky–Mann theory [14] ensures thatG has finite rank. Then, each centralizerCG(a)

is finitely generated. Now, applying [4, Theorem 1.1], we know that all centralizersCG(a) are
virtually nilpotent. Thus, there exist a p-power k and a positive integer c such that, for each
a ∈ A#, the subgroupCG(a)k has nilpotency class at most c. A result ofMal’cev [15] implies
now that all centralizers CG(a) satisfy the positive law Mc(xk, yk), and so, Lemma 6 yields
that G satisfies a positive law too. In accordance with the theorem by Burns, Macedońska
and Medvedev [5], the group G is an extension of a nilpotent group N by a group of finite
exponent. Finally, it follows from [28, Theorem 1] that G/N is finite and this completes the
proof. ��

Recall that the Fitting subgroup of a finite group H is the unique largest normal nilpotent
subgroup of H , which will be denoted by F(H). Similarly, for any profinite groupG, we will
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denote by F(G) the (unique) largest normal pronilpotent subgroup of G. We remark that any
Engel element in a profinite group G belongs to F(G). Indeed, let K be the closed subgroup
of G generated by the set of all Engel elements in G. By Baer’s theorem [17, 12.3.7], the
image of K in every finite quotient of G is nilpotent. Since K is normal in G, we see that K
is pronilpotent and so, in particular, contained in F(G).

Proof of Theorem 4 Let A1, . . . , As be the distinct maximal subgroups of A. Fix Ai and take
x ∈ CG(Ai ). Note that CG(Ai ) ⊆ CG(a) for any a ∈ Ai . So, by assumption, there exists
a positive integer ua , depending on a, such that xua ∈ F(CG(a)). Then there exist positive
integers u1, . . . , uq2 such that x

u1···uq2 ∈ F(CG(a)), for all a ∈ Ai .

Let N be any A-invariant open normal subgroup of G. By [21, Lemma 2.6], we know that
the image of xu1...uq2 in the finite quotientG/N belongs to

⋂

a∈A#
i
F(CG/N (a)) ≤ F(G/N ).

Thus, the element xu1...uq2 belongs to F(G). Since Ai and x were chosen arbitrarily, we
can repeat the argument for any x ∈ CG(Ai ) and i ∈ {1, . . . , s}. Then the images of the
centralizers CG(Ai ) in the quotient group G = G/F(G) are all torsion subgroups.

Let a ∈ A# and consider K = CG(a). The group A naturally acts on K inducing an
automorphism group A0. Further, for any α ∈ A0 the centralizer CK (α) is exactly CG(Ai ),

where Ai = 〈a, a1〉 and a1 is the element of A that induces α (in the action of A on K ). We
claim thatCK (α) is torsion, for every α ∈ A0. Indeed, if A0 has order q2, then it follows from
Theorem 1 that K is torsion. If the order of A0 is less than q2, then K = CG(a) ≤ CG(Ai ),
and so, K is torsion as well. Thus, we get that CG(a) is torsion for any a ∈ A#. Applying
again Theorem 1, we deduce that G = G/F(G) is torsion and, in particular, locally finite.

The above argument shows that it is enough to prove the theorem under the additional
assumption thatG is pronilpotent. Choose now a ∈ A#. For each pair i, j of positive integers,
we set

Si j = {(x, y) ∈ CG(a) × CG(a) : [x,i y j ] = 1}.
With an argument similar to that used in the proof of Theorem 3, with only obvious changes,
we can show that G = P1 × . . . × Pr × R, where R is a locally nilpotent subgroup of G
and Pi are finitely many Sylow subgroups of G. Therefore, it is sufficient to show that each
subgroup Pi is locally virtually nilpotent. This follows from Proposition 2 and the proof is
complete. ��

We conclude observing that the proof of Corollary 2 is analogous to that of Corollary 1
and can be obtained, with obvious changes, by replacing every appeal to Theorem 3 in the
proof of Corollary 1 by an appeal to Theorem 4. Therefore, we omit the full details.
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