Assume that G is a finite group. For every (Formula presented.), we define a graph (Formula presented.) whose vertices correspond to the elements of (Formula presented.) and in which two tuples (Formula presented.) and (Formula presented.) are adjacent if and only if (Formula presented.). We study several properties of these graphs (isolated vertices, loops, connectivity, diameter of the connected components) and we investigate the relations between their properties and the group structure, with the aim of understanding which information about G is encoded by these graphs.

Graphs encoding the generating properties of a finite group / Acciarri, C.; Lucchini, A.. - In: MATHEMATISCHE NACHRICHTEN. - ISSN 0025-584X. - 293:9(2020), pp. 1644-1674. [10.1002/mana.201900144]

Graphs encoding the generating properties of a finite group

Acciarri C.;
2020

Abstract

Assume that G is a finite group. For every (Formula presented.), we define a graph (Formula presented.) whose vertices correspond to the elements of (Formula presented.) and in which two tuples (Formula presented.) and (Formula presented.) are adjacent if and only if (Formula presented.). We study several properties of these graphs (isolated vertices, loops, connectivity, diameter of the connected components) and we investigate the relations between their properties and the group structure, with the aim of understanding which information about G is encoded by these graphs.
2020
293
9
1644
1674
Graphs encoding the generating properties of a finite group / Acciarri, C.; Lucchini, A.. - In: MATHEMATISCHE NACHRICHTEN. - ISSN 0025-584X. - 293:9(2020), pp. 1644-1674. [10.1002/mana.201900144]
Acciarri, C.; Lucchini, A.
File in questo prodotto:
File Dimensione Formato  
Mathematische Nachrichten - 2020 - Acciarri - Graphs encoding the generating properties of a finite group.pdf

Accesso riservato

Descrizione: articolo principale
Tipologia: Versione pubblicata dall'editore
Dimensione 387.84 kB
Formato Adobe PDF
387.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1707.08348.pdf

Open access

Descrizione: articolo v pre
Tipologia: Versione originale dell'autore proposta per la pubblicazione
Dimensione 395.9 kB
Formato Adobe PDF
395.9 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1255524
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact