Assume that G is a finite group. For every (Formula presented.), we define a graph (Formula presented.) whose vertices correspond to the elements of (Formula presented.) and in which two tuples (Formula presented.) and (Formula presented.) are adjacent if and only if (Formula presented.). We study several properties of these graphs (isolated vertices, loops, connectivity, diameter of the connected components) and we investigate the relations between their properties and the group structure, with the aim of understanding which information about G is encoded by these graphs.
Graphs encoding the generating properties of a finite group / Acciarri, C.; Lucchini, A.. - In: MATHEMATISCHE NACHRICHTEN. - ISSN 0025-584X. - 293:9(2020), pp. 1644-1674. [10.1002/mana.201900144]
Graphs encoding the generating properties of a finite group
Acciarri C.;
2020
Abstract
Assume that G is a finite group. For every (Formula presented.), we define a graph (Formula presented.) whose vertices correspond to the elements of (Formula presented.) and in which two tuples (Formula presented.) and (Formula presented.) are adjacent if and only if (Formula presented.). We study several properties of these graphs (isolated vertices, loops, connectivity, diameter of the connected components) and we investigate the relations between their properties and the group structure, with the aim of understanding which information about G is encoded by these graphs.File | Dimensione | Formato | |
---|---|---|---|
Mathematische Nachrichten - 2020 - Acciarri - Graphs encoding the generating properties of a finite group.pdf
Open access
Descrizione: articolo principale
Tipologia:
Versione pubblicata dall'editore
Dimensione
387.84 kB
Formato
Adobe PDF
|
387.84 kB | Adobe PDF | Visualizza/Apri |
1707.08348.pdf
Open access
Descrizione: articolo v pre
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
395.9 kB
Formato
Adobe PDF
|
395.9 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris