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GRAPHS ENCODING THE GENERATING PROPERTIES
OF A FINITE GROUP

CRISTINA ACCIARRI AND ANDREA LUCCHINI

ABSTRACT. Assume that G is a finite group. For every a,b € N, we define
a graph T'y ,(G) whose vertices correspond to the elements of G* U G? and
in which two tuples (z1,...,2a) and (y1,...,%s) are adjacent if and only if
(x1,-.-,%a,Y1,--.,Yp) = G. We study several properties of these graphs (iso-
lated vertices, loops, connectivity, diameter of the connected components) and
we investigate the relations between their properties and the group structure,
with the aim of understanding which information about G is encoded by these
graphs.

1. INTRODUCTION

The generating graph T'(G) of a finite group G is the graph defined on the
elements of G in such a way that two distinct vertices are connected by an edge if and
only if they generate G. It was defined by Liebeck and Shalev in [22], and has been
further investigated by many authors: see for example [4] 5161 7] [0 20} 25| 27| 28] [31]
for some of the range of questions that have been considered. Many deep structural
results about finite groups can be expressed in terms of the generating graph, but
of course T'(G) encodes significant information only when G is a 2-generator group.
The aim of this paper is to introduce and investigate a wider family of graphs which
encode the generating property of G when G is an arbitrary finite group.

We introduce the following definition. Assume that G is a finite group and let
a and b be non-negative integers. We define an undirected graph I'y ,(G) whose
vertices correspond to the elements of G* UG® and in which two tuples (z1, ..., z4)
and (y1,...,ys) are adjacent if and only (21,...,%4,y1,...,ys) = G. Notice that
I'1,1(G) is the generating graph of G, so these graphs can be viewed as a natural
generalization of the generating graph.

There may be many isolated vertices in the generating graph I'(G) of a finite
group G (for example if N is a normal subgroup of G and G/N is not cyclic,
then all the elements of N correspond to isolated vertices). However, [9] considers
the subgraph I'*(G) of T'(G) that is induced by all of the vertices that are not
isolated and it is proved that if G is a 2-generator soluble group, then I'*(G) is
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connected. This result is equivalent to saying the “swap conjecture” is satisfied by
the 2-generator finite soluble groups. Recall that the swap conjecture concerns the
connectivity of the graph X;(G) in which the vertices are the ordered generating d-
tuples and two vertices (21, ...,24) and (y1,...,yq) are adjacent if and only if they
differ only by one entry. Tennant and Turner [34] conjectured that the swap graph
is connected for every group. Roman’kov [33] proved that the free metabelian group
of rank 3 does not satisfy this conjecture but no counterexample is known in the
class of finite groups. There is a strong relation between the properties of the swap
graph ¥,44(G) and those of the graph I'; ,(G), obtained from I', 4(G) by deleting
the isolated vertices. In particular we prove that if ¥,,,(G) is connected, then
I'; ,(G) is also connected (see Lemma 20). Recently [I0, 5] it has been proved
that ¥4(G) is connected if either d > d(G) or d = d(G) and G is soluble (where
d(G) is the minimum number of generators of G). This can be used to prove the
connectivity of FZ,b(G) in many cases: the graphs I‘Zﬁb(G) are connected, except
possibly when a + b = d(G) and G is not soluble (see Corollary 27)).

Once is known that the graphs l";b(G) are connected in most cases, the next
step is to investigate their diameters. When G is soluble and 2-generated, it has
been recently proved [24] that the graph I'*(G) has diameter at most 3: this bound
is best possible, but it can be improved to 2 if G satisfies the following additional
property: |Endg(V)| > 2 for every non-trivial irreducible G-module V' which is
G-isomorphic to a complemented chief factor of G (which is true for example if
the derived subgroup of G is nilpotent or has odd order). In this paper we prove
a more general result (see Theorem BI0): assume that G is a finite soluble group
and that (z1,...,2p) and (y1,...,yp) are non-isolated vertices of Ty ,(G): if either
a # 1 or |Endg (V)| > 2 for every non-trivial irreducible G-module V' which is G-
isomorphic to a complemented chief factor of G, then there exists (z1,...,2,) € G*
such that G = (21, ..., 24, @1, -, Tp) = (21, -+, Za, Y1, - - -, Yp). We will give an ex-
ample showing that when a = 1 the previous statement does not remain true if
we drop the assumption on the order of the endomorphism group of the comple-
mented chief factors. But in any case the previous result allows us to conclude that
diam(T; ,(G)) < 4 whenever G is soluble and a + b > d(G) (see Corollary B.1T)).
These results lead also to a better understanding of the swap graph. For example
we deduce that if G is soluble and | Endg (V)| > 2 for every non-trivial irreducible
G-module V' which is G-isomorphic to a complemented chief factor of G, then the
diameter of the swap graph Y.4(G) is at most 2d — 1 (see Theorem B.13)).

The bound diam(I'; ,(G)) < 4 that we prove for finite soluble groups cannot
be generalized to an arbitary finite group. Assume that S is a finite non-abelian
simple group and, for d > 2, let 74(S) be the largest positive integer r such that
S” can be generated by d elements. In Section @ we will prove that if a and b are
positive integers, then l";b(ST”b(S)) is connected, however

lim diam (T ,(SL(2,27) 7+t (SLZ2))) = o0,

p—00

In Section Bl we investigate how one can deduce information on G from the
knowledge of the graphs I'; »(G) for all the possible choices of a and b. More precisely
we will denote by A*(G) the collection of all the connected components of the graphs
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I'; ,(G), for all the possible choices of a,b in N. However for each of the graphs in
this family, we do not assume to know from which choice of a, b it arises. Roughly
speaking, we can think that we packaged all the graphs I'; , (&) in a (quite spacious)
box but that we did not pay enough attention during this operation and we lost the
information to which group G these graphs correspond and the labels a,b: do not
panic, a big amount of the lost information can be reconstructed! We prove that
from the knowledge of A*(G) we may recover d(G), |G| and the labels a, b, at least
when a + b > d(G) (see Propositions (.7 and BIT)). Moreover considerations
on the number of edges of the graphs in A(G) allows us to determine, for every
t € N, the number ¢¢(t) of the ordered generating t-tuples of G. Philip Hall [21]
observed that the probability ¢ (t)/|G|! of generating a given finite group G by a
random ¢-tuple of elements is given by

Pa(t) = Z an(tG)

n
neN

where a,(G) = 32 G.p)=n #c(H) and p is the Mébius function on the subgroup
lattice of G. In other words, for a given finite group G, there exists a uniquely
determined Dirichlet polynomial Pg(s) (where s is a complex variable) with the
property that for ¢ € N the number Pg(t) coincides with the probability of generat-
ing G by t randomly chosen elements. The reciprocal of Pg(s) is the “probabilistic
zeta function” of G, studied by N. Boston [2], A. Mann [30] and the second au-
thor [I3]. We prove that Pg(s) can be determined from A(G) (see Theorem [BE13)
and consequently we may also recover from A%(G) all the information that can be
determined from Pg(s), taking advantages from a series of available results in the
literature, about the relation between the arithmetic properties of the Dirichlet
series Pg(s) and the structure of G. In particular we may deduce whether G is
soluble or supersoluble and, for every prime power n, determine the number of
maximal subgroups of G of index n. But we also prove that from A(G) we may
deduce whether G is nilpotent and the order of the Frattini subgroup (information
that cannot be recovered from Pg(s)). A possible development of this investigation
could be to minimize the number of graphs in A*(G) that have to be considered
in order to obtain information about G. From this point of view, we notice that
all the above mentioned properties of G could be deduced taking into account only
the graphs of the form I'] ,(G) for b € N.

The graphs I'1 ,(G) play also a central role in the last section of the paper.
In [7] an equivalence relation =, has been introduced, where two elements are
equivalent if each can be substituted for the other in any generating set for G. This
relation can be refined to a new sequence Eg) of equivalence relations by saying
that z Eg) y if each can be substituted for the other in any r-element generating
set. The relations EE:;) become finer as r increases, and in [7] the authors study
the value ¢(G) of r at which they stabilise to =,,. Indeed results about =,

EE;;) and ¢(G) can be reformulated and reinterpreted in terms of properties of the
graphs I'1 ,(G). A significant role in this investigation is played by the groups G
with the property that (g) is not isolated in the graph I'y 4(g)—1(G) for every g # 1
(generalising a terminology used for 2-generator groups, we say that G has non-zero
spread if it satisfies such property). In [3], Breuer, Guralnick and Kantor make the
following remarkable conjecture: a 2-generated finite group has non-zero spread
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if and only if every proper quotient is cyclic. This conjecture has been recently
proved by Burness, Guralnick and Scott [I9]. In the final part of the paper we
generalize this result, proving that a finite group GG has non-zero spread if and only
if d(G/N) < d(G) for every non-trivial normal subgroup N of G. (see Proposition

2. THE GRAPHS 'y, (G) AND T ((G).

In this section we give the definition of the graphs I', ,(G) and I'; ,(G) associated
to a finite group G and a pair (a,b) of non-negative integers. Firstly we explore
some properties of these graphs that follow easily from their definitions and then
we investigate their connection with the so called ‘swap graph’. In particular we

use this connection in order to deduce results about the connectivity of 'y 1 (G) and
I (G)-

Let G be a finite group. We will denote by d(G) the smallest cardinality of a
generating set of G. Moreover, given d € N, we will denote by ®¢(d) the set of the
ordered generating d-tuples of G and by ¢¢(d) the cardinality of this set.

Definition 2.1. Assume that G is a finite group and let a and b be non-negative in-
tegers with a < b. We define an undirected graph T, ,(G) whose vertices correspond
to the elements of G*UG? and in which two tuples (x1,...,xq) and (y1,...,y) are
adjacent if and only (x1,...,%q,y1,...,yp) = G.

Clearly if a + b < d(G), then I'y ,(G) is an empty graph, so in general we will
implicitly assume a + b > d(G).

Definition 2.2. l";:yb(G) is the graph obtained from Ty ,(G) by deleting the isolated
vertices.

In the particular case when a = 0, the graph I'g ,(G) is a star with one internal
node, corresponding to the O-tuple, and ¢ (b) leaves, corresponding to the ordered
generating b-tuples of G. Notice that if a > d(G), then I', o(G) contains loops: if
G ={g1,...,9ga) then we have a loop around the vertex (g1,...,ga)-

Let d = a+b. If a # b then I'y ,(G) and I'} ,(G) are bipartite graphs with two
parts, one corresponding to the elements of G® and the other to the elements of
G®. We will use the notations V, and V; for the vertices of I'; ,(G) corresponding,
respectively, to elements of G¢ and G°. In particular T, ,(G) has |G|*+|G|° vertices
and there exists a bijective correspondence between @ (d) and the set of the edges of
Iub(GQ): indeed if (g1, ...,94) = G, then (¢1,...,9q) and (ga+1, - - -, ga) are adjacent
vertices of the graph. Hence the number of edges of ', ;,(G) (which coincides with
the number of edges of I'; ,(G)) is ¢c(d). The situation is different if @ = b. In
that case I'y (G) has |G|* vertices, ¢ (a) loops and other (pg(d) — pa(a))/2 edges
connecting two different vertices (in other words if e is the the number of edges,
excluding the loops, and [ is the number of loops, then 2e + [ = ¢¢(d)); indeed the

two elements (g1, ..., Gas Gat1s--->9d) and (Jat1,---,9ds g1, - -+, ga) give rise to the
same edge in T'y o(G).

Lemma 2.3. Let G be any non-trivial finite group and let a be any positive integer.
Then any edge, which is not a loop, of the graph I}, ,(G) lies in a 3-cycle, except
when a =1 and G = Cs.
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Proof. Take any edge in I'; ,(G), which is not a loop, and let us call z = (21, ..., 24)
and y = (y1,...,Yaq) its vertices. If z and y are different from the tuple (1,...,1),
then both vertices are adjacent to a third vertex z = (x1y1,...,T.ys) and we are
done. Next assume that one vertex, let us say y, has all trivial entries. This implies
that z is a generating a-tuple for G, so the vertex x is adjacent to all other vertices
of I'; (G). 1f (a, G) # (1, Cy), then there exists a generating a-tuple for G different
from x, and this is adjacent to both x and y. This concludes the proof. 0

From the previous lemma it follows that no connected component of I'; ,(G) is
bipartite since a graph is bipartite if and only if it contains no odd cycles. Observe
that if G = 1, then, for every a € N, the graph T'; ,(G) consists of a unique vertex
with a loop, so it is not bipartite either. In the case where G is isomorphic to Cs
and a = 1, the graph 1"*1‘71(6') is again not bipartite since we have a loop on the
vertex corresponding to the unique generator of G.

Lemma 2.4. If |G| > 3, then T} ,(G) contains a vertex x of degree 1 if and only
ifa=0,b>d(G) and x is one of the ¢ (b) leaves of the star I'§ ,(G) = Ky pu(p)-

Proof. Assume that x is a vertex of degree 1 in I‘Zﬁb(G) and that a > 0. We may

assume ¢ = (1,...,2,) with r € {a,b}. Let s = a + b — r. Then there exists
(y1,...,ys) such that G = (z1, ..., 2, y1,...,ys). If 2; £ 1 for some i € {1,...,r},
then x is also adjacent to the tuple (x;y1,¥2,...,9s), a contradiction. So x =
(1,...,1) and consequently y = (y1,...,ys) is a tuple of generators for G. For
every m € Sym(s), the element vy, = (Y1x,-..,Ysr) is adjacent to x. Since z has
degree 1, we must have y; = -+ = ys, G = (y1) and y; is the unique element
generating G: this implies |G| < 2. O

The Mobius function pe is the function defined on the lattice of subgroups of G
by ZKZH pa(K) = dpu.q, where 0g.¢ =1 and dy.¢ = 0 if H # G. The following
is a consequence of [23] Section 3].

Lemma 2.5. Let a and b be non-negative integers. Let x = (x1,...,x,) € G" with
r € {a,b} and set K = (x1,...,2,), s=a+b—r and let 0, p(x) be the degree of x
inTop(G). We have
Sap(@) =Y ne(H)|H.
K<H
In particular |K|* divides the degree dqp(x) of x in Ty p(G).

Recall that for a d-generator finite group G, the swap graph ¥;(G) is the graph
in which the vertices are the ordered generating d-tuples and in which two vertices
(z1,...,2q4) and (y1, ..., yq) are adjacent if and only if they differ only by one entry.

Lemma 2.6. If ¥,4(G) is connected, then T} | (G) is connected.

Proof. Let d = a + b. We write any generating d-tuple w in the form w = («, ),
with @ € G* and B € G®. Now let o,0* be two non-isolated vertices of I(EE
there exist two generating d-tuples w = (o, 8) and w* = (a*, *) with o € {a, 8}
and o* € {a*, f*}. Since ¥4(G) is connected, there exists a path in ¥4(G) joining
w to w*. In order to complete our proof, it suffices to prove that if

w1 = (alvﬂl)v' cey Wy = (auaﬂu)
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is a path in X4(G), then the vertices aq, 51, @, B2, ..., ay, By belong to the same
connected component of I'; , (G). We prove this claim by induction on u. The sen-
tence is clearly true when u = 1. Assume u > 2. By induction ag, fa,. .., Qy, By
belong to the same connected component of I'; ,(G); so it is enough to show that
aq, 1, 2, B2 belong to the same connected component. Since (a1, 81) and (aq, 82)
differ for only one entry, either a3 = as or f; = (2. The graph I‘Z)b(G) contains
the path 1, a1 = ag, B2 in the first case and the path ay, 81 = f2, a2 in the second
case. O

The swap conjecture states that X4(G) is connected for every finite group G' and
every d > d(G). In [I0] it was proved that this conjecture is true if d > d(G), while
in [I5] it is proved that it is true also when d = d(G) and G is soluble. So we have:

Corollary 2.7. If G is a finite group and either a+b > d(G) or a+b = d(G) and
G is soluble, then I} | (G) is connected.

It remains an open problem to decide whether I';. »(G) is connected when a+b =
d(G) and G is unsoluble. We conjecture that the answer is positive. However we
think that proving results in this direction would be quite difficult and would require
deep information about the generation properties of the finite almost simple groups.

We conclude this section, with the following result, that will be used later.

Lemma 2.8. Let N be a normal subgroup of a finite group G and let a and b be
non-negative integers and assume that a +b > d(G). If T'; ,(G) is connected, then
I ,(G/N) is connected too.

This lemma is an easy consequence of the following result due to Gaschiitz [16].

Theorem 2.9. Let G be any group that can be generated by d elements and N
be any finite normal subgroup of G. Let n : G — G = G/N be the natural homo-
morphism given by n:g— g= Ng for all g € G. Then for any generating d-tuple
(y1,Y2, .- -,yd) of elements of G/N there exist elements x1, 2, ...,xq € G such that
(x1,22,...,2q) = G and T; = y; for 1 <i<d.

3. BOUNDING THE DIAMETER OF I'% ,(G) WHEN G IS SOLUBLE

In [24] it is proved that if G is a 2-generator finite soluble group, then the graph
I'] 1(G) obtained from the generating graph by removing the isolated vertices has a
very small diameter: indeed diam(I'j ;(G)) < 3. Moreover diam(I'] ;(G)) < 2 if G
has the property that | Endg (V)| > 2 for every non-trivial irreducible G-module V'
which is G-isomorphic to a complemented chief factor of G. The aim of this section
is to bound diam(I'; ,(G)) for arbitrary values of a and b when G is soluble.

Before dealing with the general case of a soluble group G, we need to collect in
the next four lemmas a series of results in linear algebra. Denote by M, «s(F') the
set of the r x s matrices with coefficients over the field F.

Lemma 3.1. [9, Lemma 3] Let V' be a finite dimensional vector space over the field
F. If W1 and Wo are subspaces of V' with dim Wy = dim Wy, then V' contains a
subspace U such that V. =W; ®U = Wy ® U.



GRAPHS AND GENERATION 7

Lemma 3.2. Assume that a and b are non-negative integers. Let V be a vec-

tor space of dimension ¢ over a finite field F' and let x = (v1,...,v,) and y =

(w1, ..., wy) be two elements of V* with dimp (v, ...,v,) > 0—b and dimp{wy, ..., wy) >
§ —b. Then there exists z = (z1,...,2,) € VP such that (vi,...,va,21,...2) =

(Wi, ..oy Way 21, ... 2p) = V.

Proof. Let Uy = (v1,...,0q), Us = (wy,...,w,) and s = min{dimp Uy, dimp Us}.
Clearly we may assume s < §. We prove our claim by induction on s. If s = 0, then
b > ¢ and it suffices to choose z1,..., 2 so that (z1,...,2,) = V. Assume s # 0.
Notice that b+ s > 0. Let 91,...,0s be linearly independent elements of U; and
w1, ..., Ws linearly independent elements of Us. Moreover let U 1= (01,...,0s) and
Uy = (i1, ..., 10,). Since [U3UT,| < 2|F|*—1 < |F|°, there exists 2 € V' \ (U, UTy).
Consider = (01,...,0s,2) and § = (w1,...,Ws,2). Since (s + 1)+ (b—1) > ¢

and dimp(01,...,0s,2) = dimp(w1,...,Ws, 2) = s + 1, by induction there exist
21,...,217,1 such that <517---71~)5727217---72b71> = <’LZ)1,...,’LZ)S,2,21,...,Eb,1> =
V. Clearly z = (2,21, ..., Zp—1) satisfies the conditions (vy,...,v4,2,21,...,2p—1) =
<’LU1,...,wa,f,él,...,éb_ﬁ:V. ]

Lemma 3.3. Let F be a finite field and assume oo < 8. Given R € My g(F) and
S € Mux~(F) consider the matriz (R S) € My (g4+-)- Assume that rank (R S) =

a and let mr g be the probability that a matriz Z € My g(F) satisfies the condition
rank(R + SZ) = a. Then

(63

q
mpe>1-—1
" ¢°(q—1)
Proof. There exist m < min{e,v}, X € GL(«, F') and Y € GL(v, F) such that
XSV = ( L Omsx(3=m) ) ,
O(a—m)Xm O(Oz—m)x('y—m)

where I,,, is the identity element in M,,x,(F'). Since
Is  Opxy
« = rank (R S) = rank X(R S) = rank (XR XSY)
0yxp Y

and
rank(R + SZ) = rank(X (R + SZ)) = rank(XR + X SZ)

=rank(XR+ XSY (Y 12)),
it is not restrictive (replacing R by X R, S by XSY and Z by Y ~172) to assume

S — < Im Omx(’yfm) > )
O(afm)xm O(afm)x('yfm)
Denote by v1,...,v, the rows of R and by z1,..., 2, the rows of Z. The fact that
the rows of (R S) are linearly independent implies that v,,41,...,v, are linearly

independent vectors of /%, The condition rank(R+SZ) = a is equivalent to asking
that

Ul+Zlu-'-7Um+zmavm+17"'7voz

are linearly independent. The probability that zi,..., z,, satisfy this condition is

a—m a—m-+1 a—m+(m—1)
) )
q q q
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a—m a—m—+1 a—m+(m—1)
q q q
e (- 57) (25 (£
( ¢* q° q°
¢ "(1+g+-+q"")
4
a=m(gm _ | o
q . (q ) o - . ¢
q®(q—1) q®(q—1)

Lemma 3.4. Let F' be a finite field. Given positive integers w,v,n,t satisfying
n < min{u,v} and t + n = u+ v, suppose that A1, As € Mywu(F), B € My x.(F),
D1, Dy € Miyo(F) with the property that

rank (B Al) = rank (B Ag) =n

A\ A\
rank (D1) = rank (D2> = u.

Then there exists C € My, (F) such that

B Al B A2
det(c D1>7$0 and det(c D2>7$O,

except when |F| =2, n =v and det B # 0.
Proof. Let r = rank(B). There exist X € GL(n, F') and Y € GL(v, F) such that

XBY — ( I, Orx(vfr) > ,
O(nfr)xr O(nfr)x('ufr)

where I, is the identity element in M,..(F). Let Aj1, Aoy € My (F) and Aja, Ags €
My —ryxu(F') such that

An Ao
For i € {1,2}, since

n=rank (B A;) =rank (X (B A;) (()Y vXu))
uUXv

I 0 A
— k r X (v ) il >
ran <O(nr)><r O(n r)X(v—r) Aja

Hence

>1-

=1—-

it must be rank(A;2) = n — r. In particular there exists Z; € GL(u, F') such that

XA Z; = (An) 7, — ( A Al ) ,
Ai2 O(n—r)xu (n—r) -

with Af} € M,y y—(n—r)(F) and A}y € M,y (o) (F). Notice that

)-
XBY XAZ\ Ot Ouxu
w (e o) e, 0@ 5) G ")

= det(X) det(Y') det(Z;) det (g g)

This means that it is not restrictive to assume

B = ( I, Orx(vfr) > A = ( A;kl A:? >
O(nfr)xr O(nfr)x(vfr) O(nfr)xuf(nfr) In—y
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with Arl € eru—(n—r)(F)v A;k2 € er(n—r)(F)' Let Cy € MtXT(F)a Cs € Mth*T(F)a
D; € Mtxu—(n—r) (F), Do € Mtx(n—r) (F) such that

(Ol 02) =(C and (Dﬂ Di2) = Dl
Notice that

B A Iy Orx(v—r) Aj A
det (C D) = det O(n—r)Xr O(H—T)X('U—r) O(H—T)Xu—(n—r) I’n,fr
' Ch Cs D Do
= (~1)"" 1, Orxw n Ah
— (—1)" " det ( L A
I 0y (v _A*
n r 7« v—1 A? r rx(v—r) il
= d t ( X( ) Di) O(U—T)X’r‘ Iy—r O('U*T)Xuf(nf'r‘)
' I
u—(n—r)xr Ou—(n—r)x(’u—r) u—(n—r)
_ n r Ir Or>< Orxuf(n—r)
N det{ ey Di1 — C1 A%
)" det (Co Din — C1AY) .

Assume that we can find Cl such that

rank(Dy; — C1AY,) =rank(Da; — C1A5)) =u—(n—71)
and let W1, W5 be the subspaces of F* spanned, respectively, by the columns of the
two matrices D11 —C1 A}, and Doy —C1 A%, By LemmalBT] there exists a subspace

U of F! such that Ft =W, @ U = W, @ U. If C is a matrix whose columns are a
basis for U, then

det (02 D11 — OlAjfl) 75 0 and det (02 D21 — OlA;l) 75 0
and C = (Cy Cy) is a matrix with the desired property. Set
Ry =D}, Ry=Dj,, S1 = A, Sa= A3, Z=-CY.

The previous observation implies that a matrix C' with the requested properties
exists if, and only if, there exists Z € M, y:(F) such that
(3.1) rank(Ry + 517) =rank(Ry + S2Z) =u— (n — 7).
Notice that Ri, Ry € My_(n—r)xi(F), S1,9 € My_(—ryxr(F') have the property
that
rank (Rl Sl) = rank (R2 Sg) =u—(n—r).
If either |F| = ¢ > 2 or u — (n — r) < t, then, by applying Lemma with
a=u—(n-—r),8=t~y=r, we have
1 1

TR1,S1 =~ 5 and TRy,S5 > 5
and this is sufficient to ensure that a matrix Z with the requested property exists.
Therefore we may assume u — (n —r) =t and ¢ = 2. This implies that v = r, and
so that v =n =r, i.e. det B # 0. This concludes the proof. O

The main ingredient in the proof of our results about the diameter of I'; ,(G)
is the theory of crowns, introduced by Gaschiitz in [I8]. We recall some properties
of the crowns of a finite soluble group. Let G be a finite soluble group, and let
Vi be a set of representatives for the irreducible G-groups that are G-isomorphic
to a complemented chief factor of G. For V€ Vg let Rg(V) be the smallest
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normal subgroup contained in C¢ (V') with the property that Cq(V)/Rg(V) is G-
isomorphic to a direct product of copies of V' and it has a complement in G/Rq (V).
The factor group Ci(V)/Ra(V) is called the V-crown of G. The non-negative
integer 6g(V) defined by Cq(V)/Rg(V) =g V() is called the V-rank of G and
it coincides with the number of complemented factors in any chief series of G that
are G-isomorphic to V. If 6¢ (V') # 0, then the V-crown is the socle of G/Rg (V).

Proposition 3.5. [25] Proposition 2.4] Let G and Vg be as above. Let x1, ..., x,
be elements of G such that (x1,...,24,Rc(V)) = G for any V. € Vg. Then
(1,...,xq) = G.

Lemma 3.6. [Il Lemma 1.3.6] Let G be a finite soluble group with trivial Frattini
subgroup. There exists a crown C/R and a non-trivial normal subgroup U of G
such that C = R x U.

Lemma 3.7. [I4] Proposition 11] Assume that G is a finite soluble group with
trivial Frattini subgroup and let C,R,U be as in the statement of Lemma [3.4. If
HU =HR=G, then H=G.

Now let V' be a finite dimensional vector space over a finite field of prime order.
Let K be a d-generated linear soluble group acting irreducibly and faithfully on V'
and fix a generating d-tuple (k1,...,kq) of K. For a positive integer u we consider
the semidirect product G, = V" x K, where K acts in the same way on each of
the u direct factors. We will use the aforementioned properties of the crowns, in
particular Proposition B.5 and Lemmas and 37 to essentially reduce the study
of the graph T’} ,(G) to the particular case when G' = G. Put F' = Endg (V).
Let n be the dimension of V over F. We may identify K = (ki,...,kq) with a
subgroup of the general linear group GL(n, F'). In this identification k; becomes
an n X n matrix X; with coefficients in F'; denote by A; the matrix I, — X;. Let

w; = (Vi1,...,0;4) € V¥ Then every v; ; can be viewed as a 1 x n matrix. Denote
the u x n matrix with rows v;1,...,v;, by D;. The following result is proved in
[8, Section 2].

Proposition 3.8. The group G, = V* x K can be generated by d elements if and
only if u < n(d —1). Moreover

(1) rank(/h Ad):n.

(2) (krwi,..., kqwg) = V" x K if and only if rank (Al Ad) =n-+u.
Dy --- Dy

The next result may seem rather technical, but it provides crucial information
on the graph T', 4(G) when G = V° x K.

Proposition 3.9. Let K be a non-trivial d-generator linear soluble group acting
irreducibly and faithfully on V and consider the semidirect product G = V°® x K
with § < n(d — 1), where n = dimgyq, vy V. Let a and b be non-negative integers
such that a +b = d, s € {a,b} and t = d — s. Assume that (t,|F|) # (1,2) and

there exist, for i € {1,2}, xi,...,xis and y1,..., 4y in K, and w1, ..., w5 in'V
such that
(1) (x11w11, ..., x15w1s) and (Tagway, . .., TasWas) are non-isolated vertices be-

longing to Vy in the graph I'; ,(G),
(2) <x11;-"axlsvyla"'7yt> - <y17---7ytaI217---’I25> =K
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Then there exist w1, ...,w; € VO with
<$11,---7$1s,y1w1=---7ytwt> = <y1w17~-,ytwt,iﬂzl,---,$25> =G.

Proof. Since V? x K is an epimorphic image of V™(@=1) x K| it suffices to prove
the statement in the particular case where G = V™4=1 » K. We may identify the
elements 1, ..., Tis, Y1, - - .,y with matrices X;1,..., X5, Y7,...,Y; € GL(n, F),
respectively, where F' = Endg(V) and w1, ..., wis, w1, ..., w € Vld=1) with ma-
trices Dj1,..., Dis and C1,...,Cy in My (q—1)xn(F'), respectively. We now apply
Proposition 3.8 Let

Aij:In_Xij; foriE{l,Q}andj6{1,...,5},

By=1,-Y, forke{l,... t}.
Conditions (1) and (2) imply that

rank(A11 Als Bl Bt) = rank(Agl AQS Bl Bt) =N

and
rank (All o Als) = rank (A21 o AQS) = ns.
D11 Dls D21 DQS
Moreover our statement is equivalent to saying that there exist t matrices C1,...,C; €

My g1y (F) with
Ay ... Ay By ... B By ... By Ao ... A

e G BN i R
Put, for i € {1,2}
A= (An ... Ais) € Myxns(F),
D; = (Dj1 ... Dis) € Myg—1)xns(F),
B=(Bi ... B)) € Muxni(F).
The existence of C' = (C1 ... C) € My g—1)xnt(F) such that

A B B A,
det<D1 C>5£O, det<c D2)7£0

is ensured by Lemma B4l Notice that the fact that K is a non-trivial subgroup
of GL(n, F) implies that n > 2 if |F| = 2. Moreover if |F| = 2 and rank B =
rank(B; ... B;) = nt, we necessarily have t =d — s = 1. O

We are now ready to prove the main result of this section.

Theorem 3.10. Let G be a finite soluble group, a and b be non-negative integers,
s € {a,b} andt = a+b—s. Assume that eithert # 1 or G has the following property:
if A is a non-trivial irreducible G-module G-isomorphic to a complemented chief
factor of G, then | Endg(A)| > 2 (this holds in particular when the derived subgroup
of G is either nilpotent or of odd order). Then in the graph T';  (G) given any two
vertices x1,x2 € Vs, there exists y € Vi which is adjacent to both x1 and xo.

Proof. We may assume d := a + b > d(G). We argue by induction on the order
of G. Choose two vertices x1 = (z11,...,215) and x2 = (z21,...,2T2s) in V. Let
F = Frat(G) be the Frattini subgroup of G. Clearly 21 F = (x11 F,...,21:F)
and z2F = (z21F, ..., x25F) are vertices of the graph T} \(G/F). If F # 1,
then, by induction, there exists a t-tuple yF' = (y1F, ...,y F) which is simulta-
neously adjacent to z1F and z2 [ in the graph I'; ,(G/F). This implies that G =
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<{E11,. ey L1sy Y1, - .,yt>F = <I21,.. 3 L2sy Y1y - - .,yt>F = <I11,.. s L1sy Y1, - - -;yt> =
(X215 -y T2g, Y1y - - -, Yt), hence y = (y1,...,y:) is a t-tuple adjacent to both 1 and
T2 in Fz)b(G). Therefore we may assume F' = 1. In this case, by Lemma [B.G, there
exist a crown C/R of G and a normal subgroup U of G such that C' = R x U. We
have R = Rg(A) where A is an irreducible G-module and U =g A? for § = §g(A).
By induction, in the graph I'; ,(G/U), there exists a t-tuple yU = (y1U, ...,y U)
which is adjacent to both 21U = (211U, ..., 21,U) and 23U = (221U, ..., 22:,U). In
particular we have

(32) <I11,.. s L1sy Y1y - - .,yt>U = <{E21,. ey 255 Y1y - .,yt>U =G.

We work in the factor group G = G/R. We have C = C/R=UR/R=U = A°
and either A = (C,, is a trivial G-module and G =2 (C,)° or G =U x H =2 A° x K
where K 2 H acts in the same way on each of the ¢ factors of A° and this action
is faithful and irreducible. Since G is d-generated, we have 6 < d if A is a trivial
G-module, 0 < n(d — 1), where n = dimgyq,(4) A otherwise.

By Lemma 32 in the first case and by Proposition B9 in the second case, there
exist uy,...,us € U with

(11, T, Y1l - - -5 Yelie) = (Y1, - - ., Yels, a1, - - ., Tag) = G,
ie.
(3.3) (T11, -, T15, Y1UL, - - -, YrU) R = {y1u1, . . ., Yethy, To1, - . ., T2s) R = G.
In view of Lemma B from ([B2) and ([B3]), we obtain that
(X115 oy T1s, Y1UL, - - YpUg) = (Y1UL, « -+, YpUs, To1, - . ., Tog) = G. O

Now from Theorem and [24] Theorem 1] we easily deduce the following
result.

Corollary 3.11. Let G be a finite soluble group and let a and b be non-negative
integers. Then

diam(I; ,(G)) < 4.
Moreover

(1) Assume a = b. If either G has the property that |Endg(V)| > 2 for ev-
ery non-trivial irreducible G-module V' which is G-isomorphic to a comple-
mented chief factor of G or a # 1, then diam(I'; ,(G)) < 2. Otherwise
diam(I; ,(G)) < 3.

(2) Assume a < b. If either G has the property that |Endg (V)| > 2 for ev-
ery non-trivial irreducible G-module V which is G-isomorphic to a comple-

mented chief factor of G or a # 1, then diam(I'; ,(G)) < 3.

In the remaining part of this section we want to prove that Theorem does
not remain true, when ¢ = 1, if we drop out the assumption that G has the property
that | Endg(A)| > 2 whenever A is a non-trivial irreducible G-module G-isomorphic
to a complemented chief factor of G. Indeed we want show that, for every d > 2, it
can be constructed a d-generator soluble group G with the property that I'y ; ; (@)
contains two distinct vertices a1 = (g1,1,...,91,4-1) and a2 = (g2,1,---,92.d—1)
without a common adjacent vertex. First we note that Proposition has the
following corollary.
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Corollary 3.12. Let d be a positive integer with d > 2, let V = Fy x Fy, where Fq
is the field with 2 elements and let T' = GL(2,2) x V¥ with u = 2(d — 1). Assume
that (ki,...,kq) = GL(2,2) and let v1 = k1 (vi1,.. ., 010)s - - Ya = ka(Vd1, - -+, Vau)
inT. We have T' = (y1,...,74) if and only if

11—k ... 1—Fkq
V11 Vd1 #O
V1w Vdu

Now let H = GL(2,2) x GL(2,2) and let
W= (Vi1 x -+ x Vi) x (Va1 x -+ x Vay)

be the direct product of 2u 2-dimensional vector spaces over the field Fy with two
elements. We define an action of H on W by setting

(('Ull, s 7v1u)a (lea s anu))(I)y) = ((’Uflv s 7’Ufu)5 (vgl’ s ’vgu))
and we consider the semidirect product G = H x W. Let
Ny i=Co(Var) = -+ = Ca(Vau) = {(k, 1) | k € GL(2,2)},
Ny :=Cqc(V11) = =Ce(V1u) = {(1,k) | k € GL(2,2)}.

A set of representatives for the G-isomorphism classes of the complemented chief
factors of G contains precisely 5 elements:

e Z, a central G-module of order 2, with Rg(Z) = G' = SL(2,2)? x W;
e Uj, a non-central G-module of order 3, with Re(U;) = No x W
e Us, a non-central G-module of order 3, with R (Usz) = N1 x W;
o Vi1, with Rg(Vi1) = Va1 X -+ x Vay X No;
o Va1, with Rg(Va1) = Vig x -+ x Vi, X Ny.
Let
(@1, y1)((v111, -+ -5 v11w), (V1215 - - -5 V120)) = 91,
(2a, ya)((Var1, - - -, Varu), (Vaz1, - - -, Vazu)) = ga-

We want to apply Proposition to check whether (g1,...,94) = G. The three
conditions

(91,.-,9a)Rc(Z) = G,{g1,...,9a)Ra(U1) = G, (g1, . ..,94) Ra(Us2) = G

are equivalent to (g1,...,9a)W = G, i.e. to {(z1,91),--.,(®4,y4)) = H. Moreover
{(g1,-..,9a)Ra(Vi1) = G if and only if

(1(vitt, -5 V110)5 - -+ Ta(Vd11, - - -5 Varw)) = (Vin X -+ x Vi) % GL(2,2),
(91,---,94)Rc(Va1) = G if and only if

(y1(viz1, -5 v12u), -+, Ya(Va21, - - -, Vazu)) = (Va1 X - -+ x Vo) x GL(2, 2).
Applying Corollary 312 we conclude that

(91,---,94) =G
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if and only if the following conditions are satisfied:

(1) ((x1,91), -+, (a,ya)) = H = GL(2,2) x GL(2,2),
l—21 ... 1—2x4
(2) det U111 cee Vdi11 75 0
Vllu Vdlu
11—y ... 1—-wq
(3) det V121 e Vd21 75 0
V12w Vd2u

Consider the following elements of GL(2,2):

(10 (11 (11
) YT\ o) 2o 1)

and the following elements of F3:
0=(0,0), e =(1,0), es=(0,1).
Let
(I’ I)((Oa €2, Oa ) O))a (07 €2, Oa ) O))a
a2 : (Ia I)((61,62, Oa RS O)a (617 €2, 07 R O))v
a9 Z:((O, 0, €1, €2, 0, ey 0), (O, 0, €1, €2, 0, ey 0)),

aiy -

Ad—1 Z:((O,...,0,61,62),(0,...,0,61,62)),
b1 :=(y, z)((e1,0,...,0),(e1,0,...,0)),
by :=(y, 2)((0,...,0),(e1,0,...,0)).

It can be easily checked that either a1, as,...,aq4_1,b1 asaio, as,...,aq_1, bs satisfy
the three conditions (1), (2) (3) and therefore

(ai1,a2,...,a4-1,b1) = (@12, a2,...,a4-1,b2) = G.

Now we want to prove that there is no b € G with

(ai1,a2,...,aq-1,b) = (ai2,a2,...,aq-1,b) = G.
Let b = (h1, ha)((v11, - -+, V14), (V215 - .., 24)), and assume by contradiction that
(a11,az2,...,a4-1,b) = {a12,a2,...,a4-1,b) = G. We must have in particular that

condition (1) holds, i.e. {(x,x), (h1,h2)) = H. Since (z, z) has order 2 and H cannot
be generated by two involutions (otherwise it would be a dihedral group) at least
one of the two elements hi, hs must have order 3: it is not restrictive to assume
hi1 =vy. Let

A=(1—-z 0Oax2 - 02x2):(1 00 O)’ BZl_y:(l 1>
0 0 10
a=[o1 ") g= (o1 Pxe2)

Ou—2x2  Tu—2 Ou—2x2  Tu—2
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V11

D .
D= = (D;) with Dy € My _2x2(F2) and Dy = (: ?) :

Vlu
Conditions (2) must be satisfied, hence we must have

A B A B
det(c1 D>_det<02 D)_

However
00 4 L 0N o0
A B 1 0 1 1
det(o1 D)—det 8 (1) Opsus  Di = det 00 a B = q,
0 1 1)
Ou—2x2 I Dy K
(1) 8 O2xu—2 (1) 1 0 0 0 1
det 4B = det 1 0 = det Lot =a+1
Co D) 01 O2xu—2 D1 | 1 0 a B '
01 ~ 9

Oy—2x2  Tu—2 D,
However, since o € Fy either &« = 0 or a + 1 = 0, so there is no b € G with
(a11,a2,...,a4-1,b) = (a12,a2,...,a4-1,b) = G.

We conclude this section noticing that Theorem [3.10] can be applied to bound
the diameter of the swap graph.

Theorem 3.13. Suppose that a finite soluble group G has the following property:
if A is a non-trivial irreducible G-module G-isomorphic to a complemented chief
factor of G, then | Endg(A)| > 2 (this holds in particular when the derived subgroup
of G is either nilpotent or of odd order). If d > d(G), then the diameter of the swap
graph 4(G) is at most 2d — 1.

Proof. Assume that G = (a1,...,aq) = (b1,...,bq). By Theorem BI0 there exists
x1 € G such that G = (x1,a9,...,aq) = (x1,ba,...,bs). Applying d — 1 times
Theorem B.I0] we find elements ;, for 1 < i < d — 1 satisfying
G = <fL'1, sy Li—1 Ly Q15+ - - 7ad> = <fL'1, cee 7xi—17$i7bi+17 . '7bd>'
Hence Y4(G) contains the following path of length 2d — 1:
(a1,y...,aq),
(x1,a9,...,aq),
(x1,22,a3,...,aq),

(xlv s ,.Id,l,a,d),
(xlv v 7'rd717bd)a
(fL'l, .o 7xd—17bd—l7bd)7

(xl,bg, e ,bd),
(b1,...,ba).

Since this path has length 2d — 1, we are done. O
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4. DIRECT POWERS OF SIMPLE GROUPS

In this section we will try to generalize some results proved in [I1] concerning the
generating graph of direct powers of non-abelian simple groups. As a by-product, we
will see that the bounds on the diameter of the graphs F(’;yb(G), proved in Section [3]
does not remain true if we drop the solubility assumption: for every positive integer
7 and every pair a, b of positive integers, a finite group G can be constructed such
that d(G) = a+b and I'; ,(G) is connected with diameter at least 7.

Let S be a non-abelian finite simple group and denote by A the automorphism
group Aut(S) of S. As usual we identify S with the subgroup of A consisting of
the inner automorphisms. Let d > 2 be a positive integer and define 7 = 74(5)
to be the largest positive integer r such that S”, the direct product of r copies of
S, can be generated by d elements. Notice that the group S” cannot be generated
by d elements whenever r is larger than the number of A-orbits on the set of
d-tuples generating S. Actually, 7 is equal to the number of A-orbits on ordered d-

tuples of generators for S and, for arbitrary elements z1 = (x1.1,...,%1,7),...,%4 =
(Xd1s---,%a,-) of ST, we have that ST = (z1,...,24) if and only if the d-tuples
(x1,4,-..,2q4) are distinct representatives for these orbits for 1 < ¢ < 7. Let

K = Aut(S7). Recall that K = A Sym(7). Clearly K < Aut(T'y;(S7)) for every
a,b with a + b = d. The following easy remark will play a crucial role in our
discussion.

Lemma 4.1. Assume S™ = (x1,...,2q). If ST = (y1,...,yd), then there exists
k € K such that (y1,...,ya) = (zF,...,2%).

Proof. Assume z; = (Ti1,...,%ir), Y5 = (Yj1,-..,Yj-) for 1 < 4,5 < d. Both
(11 ®d1)sees (@1ryeo oy ar) and (Y1153 Yd1)s s Yirs---,Yd,r) form a
set of representatives for the A-orbits of the set of generating d-tuples for S.
So there exist 7 € Sym(7) and (a1,...,a;) € A™ such that (y1irx,...,Ydir) =
(T1,iy...,2q)% for each i € {1,...,7}. It follows that (yi,...,ya) = (2F,...,2%)
for k = (a1,...,a;)m € K. O

Corollary 4.2. Let 7 = 7445(S5). Then the graph I'; ,(S7) is edge-transitive.

Now we will introduce other notations, useful to study the graph I', ,(S7). Fix
a vertex x = (21, ...,2,) in the part V, of '} ,(S7) corresponding to the (a)-tuples
and a vertex y = (y1,...,yp) in the part V; corresponding to the (b)-tuples and let
C = Ck(x) and D = Ck(y). To describe more precisely C' we need the following
information. Let s1,...,s, be a set of representatives for the A-orbits of S® that
can be completed to a generating d-tuple of S. Every vertex x € V, can be viewed
as an a X 7 matrix (x; ;) with z; ; € S. Denote by 7; the number of columns of
that are A-conjugate to s;. By Corollary this number is independent on the
choice of x. In particular z is K-conjugate to & with

T = (81, vy 81,82 182 vy Suy-ensSu)
——— —— ——
r terms r terms T, terms

It follows that C' =2 Ck (%) = [[;<;<, Ca(si) 1 Sym(7;). Clearly we have a similar
description for D = Ck (y), with the only difference that the role of sy, ..., s, will
be played by a set of representatives ¢1,...,%, for the A-orbits of S® that can be
completed to a generating d-tuple of S.
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Lemma 4.3. Assume 1 < a < b with (a,b) # (1,1). For every i # 1, there exists
y; € Vo such that

(1) % and g; have a common neighbour in '}, ,(S7).

(2) The first column of y; is A-conjugate to s;.

(3) T and y; differ only for 2-columns.
Proof. Since b > 2 and d(S) = 2, there exists ¢ such that s; = (1,...,1). Hence we
may assume s; = (1,...,1). Let z € V} be adjacent to Z in I'; ,(S7). We identify 2
with a matrix (t1,...,t,;) where t; € S° for every j. The columns of the matrix

S1 ce S1 e Su e Su
E =
<t1 P A tT)
are a set of representatives of the A-orbits on the generating d-tuples of S. Since
s1=(1,...,1), t; must be a generating b-tuple of S, so (s;,t1) (being a generating

d-tuple of S) is A-conjugate to the j-th column of E for some 71 < j < 7. This
means that the j-th column of E is
(i)
ty

for some o € A. It follows that if we replace the first column of E with
5?71
tq
(%)
ty

we get a matrix E*, corresponding to an edge in I'} , (S7) between z and an element

and the j-th column with

yi, obtained from z by replacing the first column with 5?71 and the jth-column
with 1. [l

Theorem 4.4. Let 7 = 7444(S5). Then the graph I'; ,(ST) is connected.

Proof. Clearly the star I ,(S7) is connected and I'f ;(S7) is connected by [L1}
Theorem 3.1}, so we may assume 0 < a < b and (a,b) # (1,1). In particular b > 2.
Let W, be the set of the elements of V,, which belong to the connected component
of I} ,(S7) which contains the vertex . The set W, is a block for the action of
K on V,. In particular the setwise stabilizer H of W, in K contains the point
stabilizer C' = Ck (%) = [ <;<, Ca(s:) 1 Sym(r;). We identify K with A} Sym(7):
in particular every element k& € K can be written in the form k = (ay,...,a,)o
with a; € A and o € Sym(7) and the map 7 : k — o is a group homomorphism
from K to Sym(r).

Since C' < H, we have C™ = [[,.;<, Sym(r;) < H”. The orbits of C™ are
G ={l,....,n}, e ={n+1,....,1+7m},....Q = {r =7y +1,...,7}. Let
j €{2,...,u} and choose g; as in Lemma 3] It follows from Corollary F2] that
Y = z"i for some k;j € K. In particular y; € W, N ij so, since W, is a block,
W, = Wo’ and k; € H. Let o; = kT : we have o; = (1,4;) with i; € ;. This
means that Sym(7) = (o2, ..., 04, Sym(71),...,Sym(7,)) < (ka, ..., k,,CY" < HT,
hence H™ = Sym(r). We identify S with Inn(S) < A. Let z € A and consider
k= (z,1,...,1) € K. Clearly ¥ = z, hence k € H. But then H contains (z,1,...,1)
for every z € A: being H™ = Sym(7), this implies that H = K.
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Now we have V, = 2% = z# < W, hence W, =V, and I‘Z’b(ST) is a connected
graph. 0

Let S = SL(2,2?7) with p > 3. We are going to prove that

lim diam(T ,(S7e+(5))) = oo,
p—00 ’

for every pair a,b of positive integer. Let ¢ = 2P. We have |S| = (¢*> — 1)q and
A = Aut(S) = S % (@) with ¢ the Frobenius automorphism. Note that, since p # 3,
then p does not divide |S]; in particular (¢) is a Sylow p-subgroup of A. Given
k= (u1,...,u;)m € K < A1Sym(7), let oy, be the number of i € {1,...,7} with

Lemma 4.5. Let k € K.
(1) If k € C, then

1
3- ‘Sz‘)q otherwise.

{6“-5—b ifa+1
o < h_
(2) If k € D, then

P
] ‘S‘dfl
pq

[ T
o) <
otherwise.
Proof. Tt suffice to prove (1) (the argument for (2) is the same). Assume that

s € S has the property that |C4(s)| is divisible by p. By Sylow Theorem, ¢ €
Ca(s)® = Cy(s™) for some o € A. It follows that s* € Cs(¢) = SL(2,2) = Sym(3).

In particular, exactly three of the representatives 7i,...,n, for the A-orbits of §
satisfy the condition that p divides |C4(n;)|. More precisely we may assume:
(1) m=1;

(2) n2| =2 and [Ca(ne2)| =p-q;
(3) Ins] =3 and [Ca(n3)| =p- (¢ +1).

First assume a # 1. We order the elements sq,...,s, € 5% in such a way that
Ca(s;) £ Sifand only if ¢ <. If i <[ and s; = (21,...,2,), then we may assume
{z1,..,2a} € Cs(¢) = Sym(3). Hence

(4.1) [ <6%.

Moreover if (s;,t) and (s;,t*) are generating d-tuples for S which are not A-
conjugate, then ¢t and t* belong to different orbits for the action of Ca(s;) on
St so fori e {1,...,1}

Bl S]° ik
4.2 7 < <— and o <6%-—.
) Cael = »
The case a = 1 follows with a similar argument, noticing that if ¢ <[, then s; €
{m,n2,ms} and that |C4(n;)| < |S|/pq for j € {1,2,3}. O

Theorem 4.6. Let S = SL(2,2P) with p > 3, assume that a < b are positive
integers and let T = T,4(S).

(1) If a# 1 and p is large enough, then
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(2) If a=1 and p is large enough, then

op
diamn(I'} (57)) > -~ 1.

Proof. By [22], the probability P(S) of generating a simple group with 2 elements

tends to 1 as |S| tends to infinity. In particular if p is large enough, then
SISt

4.3 > — .

(43) TEolA T o

Case 1: a # 1. First assume a # b. Let (7,y) be an edge of I'; ,(S7) with z € 57

and y € S*7 and let C = Ck(z), D = Ck (y). We may identify the elements of V,

with the right cosets of C' in K and the elements of Vj, with the right cosets of D

in K : there is an edge between Cz and Dy if and only if Cx N Dy # @. Assume in

particular that our graph contains the path (Cxy, Dy, Cxs): there exist ¢1,c5 € C

and dy,dy € D with

axy =dvy, coxg = day,
hence
To = C;ldgy = cgldgdflclxl € CDCux.
More generally if there exists a path of length 2r from C'z; to Cza then
9 € CDC---DC xq.
_—

r terms

Assume diam(T"; ,(S7)) > 2r. By the previous paragraph
K=CDC---DC,
_—

r terms
and in particular there exist cq,...,c, € C and dy,...,d,._1 € D such that
(4.4) (¢y...,¢) =codp-+-cr_1dr_10s.
However, by Lemma, [£.5]
codp -+ - Cr—1dp_1¢r = (W1,..., wr)p

with w; ¢ S for at most

’ “ .62 . |9°
(r+1) (Ga.ﬂ>+r(6b.ﬂ>§(2r+l) 6° - ||
p P »

choices of 7. Hence

RO . b d—1
@re1)-6e|sP IS

p - 2p
and this implies
| |a—1
2 1> .
R N
Now assume a = b. We may choose Z = (z1,...,2,) and § = (y1,...,y,) with the

property: if (x;,v;) and (y;, z;) are not A-conjugate, then there exist i* such that
i+ = y; and y;» = ;. Now let J = {i | (x;,y;) and (y;,x;) are not A-conjugate}.
We have already noticed that there exists k = (ay,...,a,)o € K such that § = z*
and Z = g*. Clearly k can be chosen so that:

(1) if ¢ € J, then ioc = i* and a; = 1;

(2) if i ¢ J, then ioc =i and (2, y:)* = (yi, Ti)-
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If i ¢ J, then 3:?12 = x; and y?? = y;, hence, since S = (r;,;), we have a? = 1.
Since 2 does not divide |A/S| = p, it must be a; € S. We can conclude that a; € S
for each 7 € {1,...,7}. By [I1} Corollary 5.2], there exist 7 < diam(I'; ,(S7)) and
¢i = (win, ..., uir)o; € C such that (¢,...,¢) = cokey - - - ke,. On the other hand,
by Lemma (.5

cokey - ke = (wy, ... wr)p
with w; ¢ S for at most
|S|
r+1)-6% —
(r+1) )
choices of i. Hence i
S| S|4~
ot 1o S5 5 18I
P 2p
and this implies
Ly 8
r .
- 2-.6¢

Case 2: a = 1. The case a = b = 1 is considered in [I1, Theorem 5.4] so we may
assume a # b. The argument is similar to the one used in Case 1. Indeed again we
can say that (¢,...,¢) =cody - ¢y—1d,—1¢, and so, by Lemma [L5]

d-1 Lo qld-1
(r+1)<3~|3| )+r<6d1~@)§(2T+1) 315
Pq P P4

choices of 7. Hence

L. |q|d—1 d—1
(2r+1)-3-]8] L
Pq 2-p

Y

and this implies
2r+12>

(SIS

We conclude this section with the following application of Theorem 41

Theorem 4.7. Assume that G is a direct product of finite non-abelian simple
groups and let a,b non-negative integers with a +b > d(G). Then l";b(G) 15 con-
nected.

Proof. Assume G = S7'* x --- x S with Si,..., S, pairwise non isomorphic non-
abelian finite simple groups. We prove our statement by induction on r. Let d = a+b
and let 7; = 74(5;). We have that S} is an epimorphic image of S7", so il follows
from Theorem B4l and Lemma 2.8 that I'; ,(S;"") is connected. In particular our
statement is true if » = 1. Suppose that > 2 and let I'y = '} ,(S7* x --- x 8'"7")
and 'y = l";b(Sf}T). By induction I'y and I's are connected graphs. If a = b, then I'y
and T'y are not bipartite, so by [35, Theorem 1] we conclude that I'; ,(G) = T'1 xT'
is connected. Suppone a # b. In this case I'; is a connected bipartite graph, with
two parts A C (ST x -+ x S/ ")% and B C (S x --- x S/"7")? and Ty is a
connected bipartite graph, with two parts C C (S7*)® and D C (S7")°. It can be
easily seen that I'' ,(G) can be identified with the subgraph of Iy x I'y induced
by (A x C) U (B x D). Now let (z,y) be an edge of I', with z € A and y € B.
The subgraph of I'; ,(G) induced by ({z} x C) U ({y} x D) is isomorphic to I's,
hence is connected. Since this is true for every egde of I'; and I'; is connected, we
immediately conclude that I'; (G) is connected as well. O
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5. PROPERTIES OF G THAT CAN BE RECOGNIZED FROM THE GRAPHS I'! ,(G).

In this section we will denote by A(G) the collection of all the connected compo-
nents of the graphs I', ,(G), for all the possible choices of a < b in N. However for
each of this graph, we do not assume to know from which choice of a, b it arises. In
particular A(G) contains lot of graphs just consisting of only one vertex and with
no edge. From these graphs we cannot recover any information, so we may restrict
our attention to the collection A(G) of all the connected components of the graphs
I'; ,(G), for all a,b € N. We deal with two questions:

Question 1. Given a graph T' € N(G), can we determine the integers a,b such
that T is a connected component of T'; (G) ¢

Question 2. Which information on G can be deduced from the knowledge of N(G)?

We already noticed that a graph T' € A%(G) can contain loops: we will denote
by [ the graph obtained from I' by deleting the loops. In this way we produce a
new collection A{(G) of graphs. In this section we will also prove that A%(G) can
be reconstructed from the knowledge of A%(G) which means that we do not lose
information if we remove all the loops from the graphs (see Corollary [B.5]).

Since a bipartite graph has a unique partition (up to switching the two sets)
if and only if it is connected, Corollary 27 tell us that when a # b, each con-
nected component I'; ;(G) is a bipartite graph whose unique partition has two
parts, namely V, and Vj, corresponding to elements of G and G’ respectively.
Note that if a + b = d(G) and G is not soluble, then we do not know whether
I'; ,(G) is connected.

The generating properties of cyclic groups are quite peculiar and exceptional
from many points of view. As a result of this, one is immediately able to decide
from the knowledge of A*(G) whether G is cyclic.

Proposition 5.1. From the knowledge of either A(G) or ]X*(G) we may recognize
whether G is cyclic, and, when G is cyclic, determine |G].

Proof. The case G = 1 is uniquely characterized by the fact that A%(G), and con-
sequently A*(G), contains infinitely many copies of the complete graph Ks: indeed
I'§ ,(G) = K for every positive integer b. Now assume that G is a non-trivial cyclic
group: only in this case A%(@) contains two stars (corresponding to I'5.1(G) and
['5.2(G), respectively) with the property that there is no bipartite graph in A(G)
with the same number of edges. If we imagine removing the loops, then we can
still recognize the cyclic groups since we have two situations: either we see only two
stars of type K1 1, or we still see two stars with no bipartite graphs with the same
number of edges. In the former case the group is C5 and in the latter one it is any
other cyclic group of order greater than two. Once we know that G is a non-trivial
cyclic group, we consider all the stars in A(G) sorted by the increasing number of
leaves u;, for i > 0: they correspond to the graphs I'g; ;(G). Note that T'] 5(G)
is the only bipartite graph in A(G) with us edges and |G| is the cardinality of the
smallest set in the partition of I'] 5(G). O

Since we can identify the cyclic groups, from now on we assume, without lost
of generality, that d(G) > 2. By Lemma 23] a graph T' € A(G) is either bipartite
or contains a 3-cycle. There is a loop around a vertex « = (x1,...,2,) if and only
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if G = (x1,...,z,) and T is not bipartite. In this case x is adjacent to all other
vertices of I'y ,.(G). We want to analyse in which other cases a vertex of a graph in
A{(G) can have this last property.

Theorem 5.2. Let G be a non-cyclic finite group. Assume that there exists I' €
AN(G) containing a 3-cycle and a vertex x which is adjacent to all the other vertices
of T'. Then either there is a loop in T' around x or d(G) = 2 and G is isomorphic
either to the Klein group or to the dihedral group D,, for some odd prime p.

Proof. Assume that = (21,29,...,2,). Since I' contains a 3-cycle, it is a con-
nected component of I'; , (G), for 7 > 1. In particular there exists y = (y1,...,¥r)
such that G = (X1, @2, ..., Tr, Y1, .-, Yr)-

First assume r > 2. If x has at least two distinct entries, say x; and x; with
1 < 7, then

= (21, Ty, Ty, D)
is also a vertex of T', since it is adjacent to y. Hence x is adjacent to z* and G
is generated by the r elements x,...,x,: in this case we have a loop around =.
If 1 =+ =z, and z7 # 1, then again «* = (z1,1,...,1) is adjacent to y and
consequently to x and this implies that G is cyclic. Finally if x = (1,...,1), then
any tuple of type (z,1,...,1), with z € G, is adjacent to y and consequently to x
and again G is cyclic.

Now assume r = 1. As a consequence I' is a connected component of the gen-
erating graph I'f ; (G) and d(G) = 2. Since x is a non-isolated vertex, there exists
y such that G = (x,y). First of all observe that x must have order 2, otherwise
also 271 would be adjacent to y and, in particular to x, contradicting the fact that
G is 2-generated. If x is not the unique involution in I', then G is generated by
two involutions and so it is a dihedral group. Otherwise, since the element x¥ also
generates G with y, we have = a¥. Therefore x belongs to = € Z((z,y)) = Z(G)
and, consequently, G is abelian and I' = I'] ;(G). Since G is not cyclic, we must
have that (z) has a cyclic complement, say H, in G and that |H| is even: but in
this case H contains an involution, say z, such that xz is a non-isolated involution,
contradicting the uniqueness of z.

We have so proved that G is isomorphic to the semidirect product of (x) ~ Cs
with (t) ~ C,,, for some integer m. If a prime p divides m, then the element xtP
generates G together with ¢. This implies © = xtP (otherwise zt? would be adjacent
to ). Hence tP =1 and n = p. If p = 2, then G = C; x Oy, otherwise G = D,,.

Note, conversely, that if either G = Cy x Cy or G = D, then any involution of
G is adjacent to all the other vertices of I'; 1 (G). O

Corollary 5.3. Let G be any non-cyclic group which is isomorphic neither to
Cy x Cy nor to Dy, for any odd prime p, and let I' € A(G). There is a loop around
a vertex x of I' if and only if T’ contains a 3-cycle and x is adjacent to all the other
vertices of T

Due to the exceptional behavior of the loops in I' € A*(G) when G is either
Cy x Cy or Dy, it is useful to be able to determine from A(G) whether or not we
are in one of these cases.

Proposition 5.4. From the knowledge of either A(G) or A(G) we may recognize
whether G is isomorphic either to the Klein group or to the dihedral group D, for
some odd prime p, and, in that case, determine |G|.
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Proof. Tt follows from Theorem 5.2 that G is either the Klein group or the dihedral
group D,, if and only if every I' € A(G) containing a 3-cycle contains also a vertex
adjacent to all the other vertices. In this case G is the Klein group if and only if
N{(G) contains the complete graph K3. If K3 is not in A(G), then G = D,, for some
p. In order to determine p, we consider all the stars in A(G) : they correspond to
[5.-(G) = Ky gg(r), With 7 > 2: so we may determine ¢g(2) = min,>2 ¢g(r). On

the other hand
1 1
2) =4p*(1—-=)(1-=
bc(2) = 4p ( 4>( p>7

which is an injective function on p, whenever p > 2. Hence by the knowledge of
¢ (2) we recognize p and consequently |G]. O

Corollary 5.5. Let G be a finite group. We may determine N(G) from the knowl-
edge of N(G).

Proof. By Propositions B.1] and £.4] we may assume that G is neither cyclic nor
dihedral of order 2p. But then, by Corollary .3 assuming that we have removed
all loops in advance, we can easily recognize which vertices have a loop around and
put them back. (I

Definition 5.6. Given I' € A(G), let e(I") be the number of edges, excluding the
loops, I(T") be the number of loops and set v(I') = 2¢(T") + I(T') if T contains a
3-cycle, v(T') = e(T") otherwise.

Proposition 5.7. Let G be a finite group. We may determine d(G) from the
knowledge of A(Q).

Proof. By Proposition 5] we may assume d = d(G) > 2. We consider all the stars
in A(G) sorted by the increasing number of leaves w;, for ¢ > 0: they corresponds
to the graph I‘ad(c)H(G) for i € N. If I' is a connected component of I'; ,(G) and
a+ b = d, then v(T') < up. On the other hand if @ + b > d, then, by Corollary
217 I' =T} ,(G) is connected and v(I') = ug1p—a. Let 2 be the subfamily of A(G)
consisting of the graphs I' with v(I') = w;. Depending on the parity of d + 1 we
have the following two situations:
(1) © contains I' ;,,(G) = Ko,u,, other bipartite z = [451] graphs not iso-
morphic to the star Ko ,, and no graph containing a 3-cycle.
(2) Q contains I' ;,,(G) = Kou,, other bipartite z = [451] graphs not iso-
morphic to the star Ky ,, and exactly one graph containing a 3-cycle.

In the former case d + 1 is odd and d = 2z. In the second case d + 1 is even and
d=2x+1. O
The following definition is useful to deal with Question [I

Definition 5.8. Let G # 1 be a finite group and let T' € A(G): we say that T’ has
level t if there exist a,b such that t = a + b and I' is a connected component of

5 4(G).
The following lemma says that this is a good definition.

Lemma 5.9. Let G # 1 be a finite group. If T' € A(G), then the level of T is
uniquely determined.
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Proof. Put d = d(G) and assume that I'f ;,;(G) has u; leaves for i > 0. Let
' e AG). If v(T) < ug, then T has level d. Otherwise v(T") = u; for some positive
integer ¢ and I has level d + 1. 0

Lemma 5.10. Let G # 1 be a finite group. Let a+b > d(G) and let V, and V,
be the two parts of the bipartite graph FZ,b(G) corresponding to elements of G* and

G® respectively. If a < b then |V,| < |V3|.

Proof. For any © = (x1,...,24) € V,, there exists a generating (a + b)-tuple z =
(21, -, zayp) for G such that x; = z; for 1 <i < a. We have y = (21,...,2) € Vp,
since its entries generate G together with the a-tuple (zp41,...,2445). We define
an injective map ¢ : V, — Vj, by setting ¢(x) = y. Assume by contradiction that ¢
is surjective: it can be easily seen that this implies that every = € V, has degree 1
in I'; ,(G): by Lemma 2.4 this is possible only when G = 1. O

Now we can give the following answer to Question [

Proposition 5.11. Let G # 1 be a finite group. If T' € N(G) has level at least
d(G)+ 1, then there exists a uniquely determined pair a < b such that T' = I‘Z)b(G).

Proof. Let d = d(G) and assume that T' has level r = d + ¢ with ¢« > 1. We
easily recognize the star I'j .(G) and, if r is even, F:/Q,r/2(G)7 which is the unique
graph, at that level, containing a 3-cycle. Now we want to sort somehow all the
bipartite graphs I'; ,(G), with 1 < a < 7/2 and b = r — a. In this case I'; ,(G) is
a bipartite graph with the unique partition given by the two sets V, and V;, and,
as we have seen in the previous lemma, |V,| < |V3|. We claim that |V,| < |[Vat1]
whenever 2a < r — 2. It is enough to construct ¢ : V, — V,4; which is injective

but not surjective. For any = = (21,...,2,) € V,, there exists y = (y1,...,u) € Vb
such that G = (21, ..., %4, Y1,--.,Yyp). Therefore the (a+1)-tuple (z1,...,2q,y1) is
obviously an element of V, 1, since it generates G with the tuple (ya2,...,y). We

set ¢(x) = (z1,...,%q,y1). The map ¢ defined in this way is clearly injective. As in
the proof of the previous lemma, it can be easily seen that ¢ is not surjective. [

The remaining part of this section is devoted to collect answers to Question

Proposition 5.12. Let G be a finite group. We may determine |G| from the
knowledge of A(G).

Proof. By Proposition [£7] we may determine d = d(G). Moreover by Lemma
and Proposition 510l we may identify the graph I' = I'; ,(G), which is a bipartite
graph with a unique partition in two parts. The two parts are V5 and V. By
Lemma BE10 |G| = |V4] < |V4l. O

An immediate consequence of the results in this section is:

Theorem 5.13. Let G be a finite group. We may determine Pg(s) from the
knowledge of A(G).

Corollary 5.14. Let G be a finite group. From the knowledge of N(G) we may
determine whether G is soluble, whether G is supersoluble and, for every prime
power n, the number of mazimal subgroups of G of index n.

Proof. If we know A(G), then we know Pg(s) and so we may deduce whether
G is soluble ([I3] Theorem 5]), whether G is supersoluble ([I3l Corollary 6]) and
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for every prime power n, the number of maximal subgroups of G of index n ([I3]
Corollary 18]). O

Although several properties of G can be recognized by the knowledge of the
coefficients of the Dirichlet polynomial Pg(s), this is not always the case. For
example we cannot deduce from Pg(s) whether G is nilpotent. Consider for example
G1 = Cs x C5 and G2 = Sym(3) x Cs5. It turns out that

o=~ (-2) (-4 (-2)

We want to show that nevertheless A(G) encodes enough information to decide
whether G is nilpotent. Before proving this result, we need an auxiliary lemma.

Lemma 5.15. Let « = (a1,...,a.), f = (b1,...,bs) be two sequences of prime
integers, with ay < --- < a, and by <--- < bs. If

then o = 3.

Proof. By induction on r + s. We have

(51) Hai H(bj — 1) = H(al — 1) Hbj

K3
Let p = max{ai,...,ap,b1,...,bs}, 7 = max{i | a; # p}, s* = max{j | b; # p}.
Since p does not divides a; — 1, b; — 1, divides a; if and only if 7 > r* and divides b;
if and only if 7 > s*, we deduce that r — r* is the multiplicity of p in the left term
of (5I) and s — s* is the multiplicity of p in the right term of (&1]). In particular

r—r*=s—s"and ap+q41 =---=a, =bg=y1 =--- = by = p. But then
1 1
1—— | = 1——
()~ I0(-5)
1<r* J<s*
and we conclude by induction. O

Theorem 5.16. Let G be a finite nilpotent group. If H is a finite group and
N(H) = N(Q), then H is nilpotent.

Proof. Let G be a finite nilpotent group. For every p € n(G) let d, = d(P) where P
is a Sylow p-subgroup of G. For every nonnegative integer § consider the Dirichlet
polynomials

Gstr= I (1-L). @uts= IT (1-2).

0<i<6—1 1<i<s p
We have
Po(s)= [ Qpa,(s):
pem(G)

Since A(H) = A(G), it follows from Theorem [E.I3and Corollary B.I4 that Py (s) =
Pg(s) and that H is a finite supersoluble group with d(H) = d(G) = d. By Lemma
and Proposition [B.11] in A(H) = AYG) we may uniquely identify the graph
A =T7 4(G) =T 4(H): it is a bipartite graph whose partition has two parts Vi
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and Vy such that |Vi| = |G| = |H|. We are going to use the knowledge of the degrees
of the vertices of V; to deduce that H must be nilpotent.
Since H is supersoluble, H = H/Frat(H) can be written in the form

H=H/Frat(H) = (W]* x - x W/*) x X,

where X is abelian, |W;| = p; for a suitable prime p; and each W; is non-central.
For every p € m(X), let §, = d(Q), where @ is a Sylow p-subgroup of H. By [I7]
Satz 2|, we have
Pu(s)= J] @Qpe.(s) T] Quiils):
pen(X) 1<i<t

Let m = {p1,...,pt}. Since Pg(s) = Py (s), by [I3| Lemma 16] we deduce that the
primes pi,...,p; are pairwise distinct, d,, = r; + 1 and 0p, = 1 for 1 < ¢ < ¢.
Moreover d, = 6, if p € 7(G) \ 7.

If w= (g1,...,94) € G corresponds to a non-isolated vertex of A, then the
degree of w in A is 6, = |G|Ps(S,1), with S = (g1,...,94) (here we denote by
P¢(S, 1) the probability than a randomly chosen element of G generates G together
with S). Notice that Pg(S,1) = Po(SFrat(G),1) = Pg/grrat(e) (1) so there exists
a subset m,, of (@) such that

(5.2) 5= 1G] TT (1—%):|V1|H (1-%).

PETw pET,,

In order to conclude that H is nilpotent, it suffices to prove that 7 = {p1,...,p:} =
@. Assume, by contradiction, 7 # &, and let ¢ = p;. We have X =Y X @, where
Q, the Sylow g-subgroup of X, is cyclic. Let K be a subgroup of H such that

K=K/Frat(H) = (W P x - x W) x Y.

It can be easily seen that d(K) < d(H) = d. So there exists (h1,...,hq) € H? such
that K = (hy,...,hq) Frat H. Let a = (hq1,...,hq) : we have

_ 1\2
50 = |H|Py (B, ha)s 1) = Vil P(EL 1) = V| <1 - p—1> .

We deduce from (2] that there exists @ C 7(G) such that
1 1)°
162+
pen p b1
in contradiction with Lemma [5.T5 O
Another piece of information that we cannot recover from the knowledge of |G|
and Pg(s) is the order of Frat(G). For example consider
Gl = <.’L’,y | .’II5 = 17y4 = ny = .’IJ2>
and
Go = (z,y | 2% =1,y" = 1,2Y = z%).
We have |G| = |G2| = 20 and

however Frat(G1) = 1 and Frat(Gs) = (2?). This motivates the following proposi-
tion.
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Proposition 5.17. Let G be a finite group. We may determine | Frat(G)| from the
knowledge of A(G).

Proof. Since G is finite, there exists § € N, such that d(H) < ¢ for every H < G.
Let t > 0 and consider the graph I'f ,(G) (we may identify this graph by Lemma
and Proposition BIT]). In V; there are some vertices (the ones corresponding to
the generating t-uples of () that are adjacent to all the vertices in V3. We remove
these vertices and the edges starting from them. We obtain a new bipartite graph
in which some vertices of V7 are isolated: let €; be the set of these vertices. Notice
that (¢) €  if and only (g, z1,...,2) # G whenever (x1,...,x;) # G. Since
d(H) < t for every H < G, we deduce that (g) € €, if and only (9, H) # G
whenever H # G. In other words (g) € € if and only if g € Frat(G). We conclude
that we may determine n = | Frat(G)| from the fact that || = n if ¢ is sufficiently
large. O

Corollary 5.18. Let G be a finite non-abelian simple group. If H is finite group
and N(H) = X(G), then H = G.

Proof. By Theorem [.13] P;(s) = Pr(s), hence H/Frat(H) = G by [32) Theorem
1].  Moreover, by the previous proposition, |Frat(H)| = |Frat(G)| = 1, hence
H=G. (]

Lemma 5.19. Assume that A(G) is known and let a,b be a pair of non-negative
integers. If either a +b > d(G) or a +b = d(G) and G is soluble, then we may
determine the graph Ty (G / Frat(Q)).

Proof. Let f = |Frat(G)|. Under our assumptions we know that I'; ,(G) is con-
nected. First assume a # b : I'; | (G) is a bipartite graph with [V, | + [V}] vertices,
while T', (@) has |G|® + |G|" vertices. In particular T, ;(G) is uniquely determined
from T'; ,(G): it suffices to add [G|* — [V | + |G|> — |V4| isolated vertices. Simi-
larly, if @ = b, then T'; ;(G) can be obtained from I'; ,(G) by adding |G|* — |V|
isolated vertices to the set V' of the vertices of I';  (G). In both cases we note that
if (x1,...,%a,y1,---,yp) = G, then (x101,...,T000,y151,---,ys0s) = G for every
a;, B; € Frat(G). We may consider the following equivalent relations in I'y ,(G) :
wy ~1 wo if and only if w; and ws have the same neighbourhood in the graph;
w1 = (T1,...,2) ~2 (Y1,...,Yy), with v € {a, b}, if and only if for any j there ex-
ists f; € Frat(G) with y; = z; f;. For every vertex = (z1,...,2y) of I'y 4(G), the
equivalence class €, = [x]., is the disjoint union of |Q,|/f7 ~2-equivalence classes:
we obtain I'y ,(G/ Frat(G)) from I'y ,(G), by deleting from every equivalence class
O, precisely |Q.|(1 —1/f7) vertices. O

By the previous results, at least in the case of finite soluble groups, the knowledge
of A(Q) is equivalent to the knowledge of A((G/ Frat(G)) and | Frat G|.
From what we proved in this section, a question naturally arises:

Question 3. Assume that G is a (soluble) group with Frat(G) = 1. Is G uniquely
determined from A(G)?

The answer is negative. Indeed, consider the following example. Let C1 = (1)
and Cy = (x2) be two cyclic groups of order 5 and let Vi = (a1, b1), Vo = (az, ba)
be two vector space over the field with 11 elements. We define an action of C}
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on V7 in which x; takes a; to 3a; and by to 4b;, and an action of Cy on V5 in
which x5 takes as to 3as and by to Hbs. The semidirect products G; = Vi x Cy
and Ga = V5 x C5 are both of order 605. It is easy to see that G7 2 G», since
every element of C'; has determinant 1 while this is not true for Cs. For j = 1,2
let Wi ; = (a;), Wa; = (b;) and let m; ; be the projection G; — G;/W; ;. We now
construct a bijection 7 : G; — G2 in the following way:
e we set 7((aay + Bb1)z]) = (aaz + Bba)xy if v =0,1 mod 5;
e let g = (aaq + Bby)z] with v # 0 mod 5. There exist o*, 3* (depending on
a, B,7) such that g = ((a*a1 + B*b1)z1)?. We set g7 = ((a*az + *b2)x2)7.
For i € {1,2}, 7 induces a bijection 7; : G1/W; 1 — G2/W,; 2. We have
(5-3) {g7m2) = (g™
We claim that (g1,...,94) = G1 if and only if (¢7,...,g]) = G2. Clearly this
claim implies that 7 induces a graph isomorphism between I'y, (G1) and T' 5(G2) for
every pair a, b of non-negative integers. To prove the claim notice that (y1,...,y4) =
Gjifandonlyif (y; 7, ...,y;"") = G;/W; ; fori € {1,2} and that (y;"7,...,y,"7) =
G;/Wi j if and only if there exist k1, k2 with (y;7) # (y7). So assume (g1, ..., ga) =
Gy and fix i € {1,2}. There exist ki, ky with (g;"") # (g."). It follows from (B3],
that
(G ) = (g )™ # g )™ = (g )5
and so we conclude (¢7,...,97) = Ga.

We conclude by observing that most of the arguments in this section use only part
of the information given by the family Af(G). In particular it seems a natural ques-
tion to ask whether a smaller family of graphs can efficiently encode the generating
property of G. In some crucial steps of the proofs of our results (for example in the
proof of Theorem [5.16 and Proposition [5.17) a decisive role is played by the graphs
'} (G). So a good candidate to consider seems to be the family Ay*(G) of the con-
nected components of the graphs I'7 ;(G) for t € N. We assume A(G) = {A }fren,
where the graphs are enumerated in such a way that v(Ay) < v(Agyq1) for every
ke N.

Theorem 5.20. Assume that the family A7(G) is known. We may determine |G|,
d(G), Pg(s) and | Frat(G)|. Moreover we may recognize whether or not G is soluble,
supersoluble, nilpotent.

Proof. If G is cyclic, then Ag = I'] ((G) is a non-trivial connected graph containing
a vertex of degree 1, while, by Lemma [Z4] if G is not cyclic none of the graphs
{A}ren can contain a vertex of degree 1. So we may recognize from A1%(G) whether
G is cyclic. Therefore, from now on we will assume that G is not cyclic.

Let d = d(G). There exists 7 € N such that Ag,...,A; are the connected
components of I'] ; ;(G). By Corollary T for k > 7 we have Ay, =T7 ;. . (G).
We need to recognize 7. Notice that if k£ > 7, then Ay, is a bipartite graph with one
of the two parts consisting precisely of |G| vertices and the second part containing
a subset of ¢g(d+ k — 7 — 1) vertices connected to all the vertices of the first part.
We claim that Ay does not behave in this way whenever k < 7. If d = 2, then none
of the connected components of I'y 1(G) is bipartite. So we may assume d # 2.
Assume by contradiction that there exists a connected component of I'T ;| (G),
say A, which is a bipartite graph with two parts A and B such that |A| = G and at
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least one vertex in B is connected to all the vertices in A. Since (1) is an isolated
vertex of I'y 4_1(G), it must be A C G471 and B C G. Let (z) € B be a vertex
connected to all the vertices of A. Fix (g1,...,94-1) € A. Since

<xagla cee 7gd—1>:<xaglx7927 cee 7gd—1>:<gl7glxug27 e 7gd—1>:<917$7927 e 7gd—1>

we have (z,¢92,...,94—1) € A, hence (z) and (x,¢ga,...,94—1) are adjacent, but this
would imply G = (x,¢92,...,94—1), hence d(G) < d — 1, a contradiction.

Once 7 has been determined, we have that |G| is the cardinality of the smaller
part in the bipartite graph Ay, for any choice of k > 7. Alternatively, we may notice
that

. V(Agg) . ¢ad+k—T+1)
lim ————= = lim
k—o0 I/(Ak) k—o00 (bg(d—i-k—T)

We can also determine d(G), since v(Ay) = ¢g(d + k —7) ~ |G|THF~T if k is large
enough and so

=1G.

d= lim logg(v(Ar)) =k +T.
k— o0

But now we know Pg (k) for every positive integer k # d(G) and this is enough to
determine the Dirichlet polynomial Pg(s). In particular we may recognize whether
G is soluble, supersoluble, nilpotent (for this we repeat the argument in Theorem
(.16). Moreover we may determine | Frat(G)| (same proof as Proposition 5.17). O

6. GENERALIZING SOME DEFINITIONS AND RESULTS FROM m

The following equivalence relation =, was introduced in [7 Section 2]: two
elements are equivalent if each can be substituted for the other in any generating
set for G. By [7, Proposition 2.2], © =, y if and only if = and y lie in exactly the

same maximal subgroups of G. We then refine this to a sequence EE;) of equivalence

relations by saying that, for any positive integer r, x EE:;) y if and only if

V21,201 €G) (21,00, 2021) = Q) & (Y, 21, .., 20—1) = Q).

Notice that = =1 y if and only if (x) and (y) have the same neighbours in the
graph I'; ,_1(G): in particular 'y ,_1(G) determines the number of classes for the
equivalence relation Eg) and the sizes of these classes. The relations Eg) become
finer as r increases. We define a group invariant 1)(G) to be the value of r at which
the relations ={ stabilise to =p,. If G is soluble then P(G) € {d(G),d(G) + 1}
(see [T, Corollary 2.12]). Furthermore, in general d(G) < ¢(G) < d(G) + 5 (see
[7, Corollary 2.13]), however no example is known of a finite group G for which
Y(G) > d(G)+1. For r > ¢(G), we have that (x) and (y) have the same neighbours
in the graph I'; ,_1(G) if and only if =, y. In particular from the knowledge of
the family of graphs {T'1 ,_1(G)}ren we may determine the precise value of ¥ (G).

Given a subset X of a finite group G, we will denote by dx(G) the smallest
cardinality of a set of elements of G generating G together with the elements of X.
In [7, Definition 2.15] the following notion is also introduced: a finite group G is
efficiently generated if for all » € G, dy,1(G) = d(G) implies that = € Frat(G).

Proposition 6.1. Assume that the family Ay(G) = {T'] ,_1(G)}ren is known. We
may deduce whether G is or not efficiently generated.
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Proof. First, by Theorem (520, we may determine d(G), |G| and |Frat(G)|. More-
over, inside the family A(G), we may identify the connected components of
I d(G)fl(G) and consequently we may count how many of the vertices of
I'1,a(¢)—1(G) corresponding to 1-tuples are isolated. Let w be the number of these
vertices: G is efficiently generated if and only | Frat(G)| = w. O

Corollary 6.2. Assume that the family A(G) is known. If G is soluble, then we
may determine ¥ (G).

Proof. Assume that G is a finite soluble group. By [7, Corollary 2.20], ¥(G) = d(G)
if G is efficiently generated, ¢(G) = d(G) + 1 otherwise, so the conclusion follows
immediately from the previous proposition. 0

Generalizing a definition given in [7] for 2-generator groups, we say that a finite
G has non-zero spread if (g) is not isolated in the graph I'; gg)—1(G) for every
g # 1. Moreover we define an equivalence relation =r on the elements of G by the
rule z =r y if (z) and (y) have the same set of neighbours in the graph I' g(g)—1(G).
The following statements generalize [7l, Proposition 4.5] and [7, Theorem 4.6] and
can be easily proved.

Proposition 6.3. Let G be a finite group. Then the relations =r and zE{f) on

G coincide; hence =y, is a refinement of =p, and is equal to =r if and only if

P(G) <d.

Theorem 6.4. Let G be a finite group with d(G) = d.

(1) G has non-zero spread if and only if G is efficiently generated and has trivial
Frattini subgroup.
(2) If G is soluble and has non-zero spread, then ¢¥(G) = d.

Assume that G is a finite group with non-zero spread and let d = d(G). If N is
a non-trivial normal subgroup of G, then d(G/N) < d (otherwise we would have
dg,y(G) = d for every y € N). So G has the following property:

(%) every proper quotient can be generated by d — 1 elements, but G cannot.

When d(G) = 2, groups with non-zero spread are also called %-generated. In
[B], Breuer, Guralnick and Kantor make the following remarkable conjecture: a
finite group is %—generated if and only if every proper quotient is cyclic. In our
terminology we could propose the following more general conjecture:

Conjecture 1. A finite group G has non-zero spread if and only if G satisfies the
property (x).

The groups with this property (x) have been studied in [12]. By [12] Theorem
1.4 and Theorem 2.7], there exists a monolithic primitive group L and a positive
integer ¢ such that G = L; and d(L;—1) < d(L¢) (setting Lo = L/soc(L)). This
motivates the following question:

Question 4. Let L be a finite monolithic primitive group and t € N. Assume that
G L, and d(L;—1) < d(L;). Does G have non-zero spread?

The remain part of this section will give an affirmative answer to the previous
question.
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First assume that N = soc L is nonabelian. If ¢ = 1 then by [29] Theorem 1.1]
d=d(G) = d(L) = max(d(L/N),2) < max(d — 1,2), hence d = 2 and Question M
has an affirmative answer by Theorem 1 in [I9]. Suppose ¢t # 1 (and consequently
d # 2) and let @ = (I,lng,...,In:), with [ € L, n; € N, be a non-identity ele-
ment of G = L,. Since d(L;—1) < d, there exist y1 = (I1,l1m1.2,...,l1m1,-1), - - -,
Yd—1 — (ldfl, ldflmdflyz, [P ,ldflmdflytfl) such that Lt,1 = <y1, [P ;yd71>- This
is equivalent to saying that the rows of the matrix

l1 ly . lg—1
llml,z 12m2,2 ce ld71md71,2
A=
llml,tfl lQmQ,tfl ce ldflmdfl,tfl

are generating (d — 1)-tuples of L which belong to distinct orbits with respect
to the conjugacy action of C' = Caut(L/N). Since x is a non-identity element
of G, there exist ¢ € {2,...,t} and n in N such that {" # In;. Up to re-

ordering, we may assume i = t. Let ¢1 = (I1,lima2, ..., laom1e—1,10), ..., Ya—1 =
(la=1,lag—1ma—1,2, - la—ima—1,4—1,1;_). We claim that L, = (§1,...,04—1,%).
This is equivalent to say that the rows of the matrix

1 Iy e lag—1 l

lymy 2 lomaa ... lg_1mg_12 Ing
A :: . . .
l1m1,t—1 l2m2,t—1 cee ld—lmd—l,t—l Ing_y
i 3 e 0 i

are generating d-tuples of L which belong to distinct orbits with respect to the
conjugacy action of C' = Cayt.(L/N). The way in which A has been constructed
ensures that the first ¢ — 1 rows of A satisfy the requested properties. We have only
to prove that the last row cannot be C-conjugate to one of the first ¢ —1 rows. Sup-
pose 1 € {2, ot = 1} : since (ll, ZQ, ceey ld—l) and (llmu, lgmgyi, ey ld_lmd_lﬁi)
are not C-conjugate and n € C we deduce that also (I7,15,...,05_,In;) and
(lyma iy loma gy ... la—1ma—1,:,In;) are not C-conjugate. Finally assume by con-
tradiction that there exists v € C with (I7,...,15_1,Iny) = (la,...,la—1,1)". Since
(l1,...,la—1) = L, we have Cc(l1,...,lg—1) = 1, hence n = v and consequently
Ing = 1™, a contradiction. So we have proved that Question M has an affirmative
answer when soc(L) is nonabelian.

Now assume that N = socL is abelian. We have L = N x H, where H is
an irreducible subgroup of Aut(N) and d(H) = d(L/N) < d — 1. As usual, let
F = Endyg N, ¢ = |F|, n = dimp(N), m = dimp(Der(H, N)). Let 1,...,0,, be
a basis of Der(H,N) as an F-vector space. For each h € H consider the matrix
Ap € My, «n(F) defined by setting

61(h)

The following is an immediate consequence of [26, Proposition 5].
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Lemma 6.5. Suppose that H = (h1,...,h) and let u be a positive integer. Let
w; = (Wi, ,wiy) € NC with1 <i<k and let

Wi, 1
B; = : € Mysn(F).
Wiy
The following are equivalent.

(1) Lt :Nt x H = <h1w1,...,hkwk>;

An, - An)
(2)rank<Bl Bk)—m+t.

In particular d(Ly) < k if and only if m +t < kn.

In our case d(G) = d(L;) = d but d(L;—1) < d — 1, since L;_1 is a proper
epimorphic image of L; : by the previous Lemma we must have m+¢t—1= (d—1)n
ie.,

t=(d—-1n—m+1.

Now assume that x := h(vy,...,v;) is a non-identity element of L;. Fix hy, ..., hg—1
such that H = (hy,...,hq_1). There exist w; € N'=1, for 1 <i < d — 1, such that
Lt,1 = <h1’(2)1, ceey hdflﬁ)d,ﬁ, in other words
A, ... Ap >
6.1 det [ "=" a1 0.
(6.1) <31 ... Bg_1 7
We claim that there exist uq,...,uq_1 € N such that
(62) Lt = <h(’Ul, SN ,Ut), hl(tbl,ul), ceey hdfl(ﬁ)dfl,udfl».
Set
vy
_B =
V-1

By Lemma [65 (62]) is equivalent to

Ay A o An
(6.3) rank [ B. By -+ By |=Wd-1)n+1l=m+t.
veoup o Ugea

Since x # 1, we have
X:=| B | #0.

In particular at least one column of X is a non-zero element of M,,4+,1(F). Let us
write such a column in the form
Y

with C € My,+4-1,1(F) and v € F. Let

Apy e Ah>
7= (" ha )
<31 ... Ba,
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By (@), C is a linear combination of the columns of Z. If v # 0, then

SO

c Z
det (7 0> #0,

we are done if we choose uy = --- = uq—1 = 0. If v = 0, then C is a non-

zero matrix, so, denoting by Z; the i-th column of Z, there exists (0,...,0) #

(A

1> ANd—1)n) € F@=1n guch that > iXiZi = C. Choose (au,...,0@—-1)n) €
F@=D7n guch that > Ay # 0. If we choose

uy = (a17 ceey an)u Ug = (an+17 ey a2n)7 ey Ug—1 = (a(d72)n+17 ey a(d*l)n)u

en

th

C Z
det (0 U udl) #O

Summarizing we proved:

Proposition 6.6. The answer to Question []] is affirmative. As a consequence
Conjecture [ is true.
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