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GRAPHS ENCODING THE GENERATING PROPERTIES

OF A FINITE GROUP

CRISTINA ACCIARRI AND ANDREA LUCCHINI

Abstract. Assume that G is a finite group. For every a, b ∈ N, we define
a graph Γa,b(G) whose vertices correspond to the elements of Ga ∪ Gb and
in which two tuples (x1, . . . , xa) and (y1, . . . , yb) are adjacent if and only if
〈x1, . . . , xa, y1, . . . , yb〉 = G. We study several properties of these graphs (iso-
lated vertices, loops, connectivity, diameter of the connected components) and
we investigate the relations between their properties and the group structure,
with the aim of understanding which information about G is encoded by these
graphs.

1. Introduction

The generating graph Γ(G) of a finite group G is the graph defined on the
elements ofG in such a way that two distinct vertices are connected by an edge if and
only if they generate G. It was defined by Liebeck and Shalev in [22], and has been
further investigated by many authors: see for example [4, 5, 6, 7, 9, 20, 25, 27, 28, 31]
for some of the range of questions that have been considered. Many deep structural
results about finite groups can be expressed in terms of the generating graph, but
of course Γ(G) encodes significant information only when G is a 2-generator group.
The aim of this paper is to introduce and investigate a wider family of graphs which
encode the generating property of G when G is an arbitrary finite group.

We introduce the following definition. Assume that G is a finite group and let
a and b be non-negative integers. We define an undirected graph Γa,b(G) whose
vertices correspond to the elements of Ga∪Gb and in which two tuples (x1, . . . , xa)
and (y1, . . . , yb) are adjacent if and only 〈x1, . . . , xa, y1, . . . , yb〉 = G. Notice that
Γ1,1(G) is the generating graph of G, so these graphs can be viewed as a natural
generalization of the generating graph.

There may be many isolated vertices in the generating graph Γ(G) of a finite
group G (for example if N is a normal subgroup of G and G/N is not cyclic,
then all the elements of N correspond to isolated vertices). However, [9] considers
the subgraph Γ∗(G) of Γ(G) that is induced by all of the vertices that are not
isolated and it is proved that if G is a 2-generator soluble group, then Γ∗(G) is
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2 CRISTINA ACCIARRI AND ANDREA LUCCHINI

connected. This result is equivalent to saying the “swap conjecture” is satisfied by
the 2-generator finite soluble groups. Recall that the swap conjecture concerns the
connectivity of the graph Σd(G) in which the vertices are the ordered generating d-
tuples and two vertices (x1, . . . , xd) and (y1, . . . , yd) are adjacent if and only if they
differ only by one entry. Tennant and Turner [34] conjectured that the swap graph
is connected for every group. Roman’kov [33] proved that the free metabelian group
of rank 3 does not satisfy this conjecture but no counterexample is known in the
class of finite groups. There is a strong relation between the properties of the swap
graph Σa+b(G) and those of the graph Γ∗

a,b(G), obtained from Γa,b(G) by deleting

the isolated vertices. In particular we prove that if Σa+b(G) is connected, then
Γ∗
a,b(G) is also connected (see Lemma 2.6). Recently [10, 15] it has been proved

that Σd(G) is connected if either d > d(G) or d = d(G) and G is soluble (where
d(G) is the minimum number of generators of G). This can be used to prove the
connectivity of Γ∗

a,b(G) in many cases: the graphs Γ∗
a,b(G) are connected, except

possibly when a+ b = d(G) and G is not soluble (see Corollary 2.7).

Once is known that the graphs Γ∗
a,b(G) are connected in most cases, the next

step is to investigate their diameters. When G is soluble and 2-generated, it has
been recently proved [24] that the graph Γ∗(G) has diameter at most 3: this bound
is best possible, but it can be improved to 2 if G satisfies the following additional
property: |EndG(V )| > 2 for every non-trivial irreducible G-module V which is
G-isomorphic to a complemented chief factor of G (which is true for example if
the derived subgroup of G is nilpotent or has odd order). In this paper we prove
a more general result (see Theorem 3.10): assume that G is a finite soluble group

and that (x1, . . . , xb) and (y1, . . . , yb) are non-isolated vertices of Γa,b(G): if either
a 6= 1 or |EndG(V )| > 2 for every non-trivial irreducible G-module V which is G-
isomorphic to a complemented chief factor of G, then there exists (z1, . . . , za) ∈ Ga

such that G = 〈z1, . . . , za, x1, . . . , xb〉 = 〈z1, . . . , za, y1, . . . , yb〉. We will give an ex-
ample showing that when a = 1 the previous statement does not remain true if
we drop the assumption on the order of the endomorphism group of the comple-
mented chief factors. But in any case the previous result allows us to conclude that
diam(Γ∗

a,b(G)) ≤ 4 whenever G is soluble and a + b ≥ d(G) (see Corollary 3.11).
These results lead also to a better understanding of the swap graph. For example
we deduce that if G is soluble and |EndG(V )| > 2 for every non-trivial irreducible

G-module V which is G-isomorphic to a complemented chief factor of G, then the

diameter of the swap graph Σd(G) is at most 2d− 1 (see Theorem 3.13).

The bound diam(Γ∗
a,b(G)) ≤ 4 that we prove for finite soluble groups cannot

be generalized to an arbitary finite group. Assume that S is a finite non-abelian
simple group and, for d ≥ 2, let τd(S) be the largest positive integer r such that
Sr can be generated by d elements. In Section 4 we will prove that if a and b are
positive integers, then Γ∗

a,b(S
τa+b(S)) is connected, however

lim
p→∞

diam(Γ∗
a,b(SL(2, 2

p)τa+b(SL(2,2
p)))) = ∞.

In Section 5 we investigate how one can deduce information on G from the
knowledge of the graphs Γ∗

a,b(G) for all the possible choices of a and b.More precisely

we will denote by Λ∗(G) the collection of all the connected components of the graphs
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Γ∗
a,b(G), for all the possible choices of a, b in N. However for each of the graphs in

this family, we do not assume to know from which choice of a, b it arises. Roughly
speaking, we can think that we packaged all the graphs Γ∗

a,b(G) in a (quite spacious)
box but that we did not pay enough attention during this operation and we lost the
information to which group G these graphs correspond and the labels a, b: do not
panic, a big amount of the lost information can be reconstructed! We prove that
from the knowledge of Λ∗(G) we may recover d(G), |G| and the labels a, b, at least
when a+ b > d(G) (see Propositions 5.7, 5.12 and 5.11). Moreover considerations
on the number of edges of the graphs in Λ∗(G) allows us to determine, for every
t ∈ N, the number φG(t) of the ordered generating t-tuples of G. Philip Hall [21]
observed that the probability φG(t)/|G|

t of generating a given finite group G by a
random t-tuple of elements is given by

PG(t) =
∑

n∈N

an(G)

nt

where an(G) =
∑

|G:H|=n µG(H) and µ is the Möbius function on the subgroup

lattice of G. In other words, for a given finite group G, there exists a uniquely
determined Dirichlet polynomial PG(s) (where s is a complex variable) with the
property that for t ∈ N the number PG(t) coincides with the probability of generat-
ing G by t randomly chosen elements. The reciprocal of PG(s) is the “probabilistic
zeta function” of G, studied by N. Boston [2], A. Mann [30] and the second au-
thor [13]. We prove that PG(s) can be determined from Λ∗(G) (see Theorem 5.13)
and consequently we may also recover from Λ∗(G) all the information that can be
determined from PG(s), taking advantages from a series of available results in the
literature, about the relation between the arithmetic properties of the Dirichlet
series PG(s) and the structure of G. In particular we may deduce whether G is
soluble or supersoluble and, for every prime power n, determine the number of
maximal subgroups of G of index n. But we also prove that from Λ∗(G) we may

deduce whether G is nilpotent and the order of the Frattini subgroup (information
that cannot be recovered from PG(s)). A possible development of this investigation
could be to minimize the number of graphs in Λ∗(G) that have to be considered
in order to obtain information about G. From this point of view, we notice that
all the above mentioned properties of G could be deduced taking into account only
the graphs of the form Γ∗

1,b(G) for b ∈ N.

The graphs Γ1,b(G) play also a central role in the last section of the paper.
In [7] an equivalence relation ≡m has been introduced, where two elements are
equivalent if each can be substituted for the other in any generating set for G. This

relation can be refined to a new sequence ≡
(r)
m of equivalence relations by saying

that x ≡
(r)
m y if each can be substituted for the other in any r-element generating

set. The relations ≡
(r)
m become finer as r increases, and in [7] the authors study

the value ψ(G) of r at which they stabilise to ≡m. Indeed results about ≡m,

≡
(r)
m and ψ(G) can be reformulated and reinterpreted in terms of properties of the

graphs Γ1,b(G). A significant role in this investigation is played by the groups G
with the property that (g) is not isolated in the graph Γ1,d(G)−1(G) for every g 6= 1
(generalising a terminology used for 2-generator groups, we say that G has non-zero
spread if it satisfies such property). In [3], Breuer, Guralnick and Kantor make the
following remarkable conjecture: a 2-generated finite group has non-zero spread
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if and only if every proper quotient is cyclic. This conjecture has been recently
proved by Burness, Guralnick and Scott [19]. In the final part of the paper we
generalize this result, proving that a finite group G has non-zero spread if and only
if d(G/N) < d(G) for every non-trivial normal subgroup N of G. (see Proposition
6.6).

2. The graphs Γa,b(G) and Γ∗
a,b(G).

In this section we give the definition of the graphs Γa,b(G) and Γ∗
a,b(G) associated

to a finite group G and a pair (a, b) of non-negative integers. Firstly we explore
some properties of these graphs that follow easily from their definitions and then
we investigate their connection with the so called ‘swap graph’. In particular we
use this connection in order to deduce results about the connectivity of Γa,b(G) and
Γ∗
a,b(G).

Let G be a finite group. We will denote by d(G) the smallest cardinality of a
generating set of G. Moreover, given d ∈ N, we will denote by ΦG(d) the set of the
ordered generating d-tuples of G and by φG(d) the cardinality of this set.

Definition 2.1. Assume that G is a finite group and let a and b be non-negative in-
tegers with a ≤ b. We define an undirected graph Γa,b(G) whose vertices correspond
to the elements of Ga∪Gb and in which two tuples (x1, . . . , xa) and (y1, . . . , yb) are
adjacent if and only 〈x1, . . . , xa, y1, . . . , yb〉 = G.

Clearly if a + b < d(G), then Γa,b(G) is an empty graph, so in general we will
implicitly assume a+ b ≥ d(G).

Definition 2.2. Γ∗
a,b(G) is the graph obtained from Γa,b(G) by deleting the isolated

vertices.

In the particular case when a = 0, the graph Γ∗
0,b(G) is a star with one internal

node, corresponding to the 0-tuple, and φG(b) leaves, corresponding to the ordered
generating b-tuples of G. Notice that if a ≥ d(G), then Γa,a(G) contains loops: if
G = 〈g1, . . . , ga〉 then we have a loop around the vertex (g1, . . . , ga).

Let d = a+ b. If a 6= b then Γa,b(G) and Γ∗
a,b(G) are bipartite graphs with two

parts, one corresponding to the elements of Ga and the other to the elements of
Gb. We will use the notations Va and Vb for the vertices of Γ∗

a,b(G) corresponding,

respectively, to elements of Ga and Gb. In particular Γa,b(G) has |G|
a+ |G|b vertices

and there exists a bijective correspondence between ΦG(d) and the set of the edges of
Γa,b(G): indeed if 〈g1, . . . , gd〉 = G, then (g1, . . . , ga) and (ga+1, . . . , gd) are adjacent
vertices of the graph. Hence the number of edges of Γa,b(G) (which coincides with
the number of edges of Γ∗

a,b(G)) is φG(d). The situation is different if a = b. In

that case Γa,a(G) has |G|
a vertices, φG(a) loops and other (φG(d)−φG(a))/2 edges

connecting two different vertices (in other words if e is the the number of edges,
excluding the loops, and l is the number of loops, then 2e+ l = φG(d)); indeed the
two elements (g1, . . . , ga, ga+1, . . . , gd) and (ga+1, . . . , gd, g1, . . . , ga) give rise to the
same edge in Γa,a(G).

Lemma 2.3. Let G be any non-trivial finite group and let a be any positive integer.
Then any edge, which is not a loop, of the graph Γ∗

a,a(G) lies in a 3-cycle, except
when a = 1 and G ∼= C2.
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Proof. Take any edge in Γ∗
a,a(G), which is not a loop, and let us call x = (x1, . . . , xa)

and y = (y1, . . . , ya) its vertices. If x and y are different from the tuple (1, . . . , 1),
then both vertices are adjacent to a third vertex z = (x1y1, . . . , xaya) and we are
done. Next assume that one vertex, let us say y, has all trivial entries. This implies
that x is a generating a-tuple for G, so the vertex x is adjacent to all other vertices
of Γ∗

a,a(G). If (a,G) 6= (1, C2), then there exists a generating a-tuple for G different
from x, and this is adjacent to both x and y. This concludes the proof. �

From the previous lemma it follows that no connected component of Γ∗
a,a(G) is

bipartite since a graph is bipartite if and only if it contains no odd cycles. Observe
that if G = 1, then, for every a ∈ N, the graph Γ∗

a,a(G) consists of a unique vertex
with a loop, so it is not bipartite either. In the case where G is isomorphic to C2

and a = 1, the graph Γ∗
1,1(G) is again not bipartite since we have a loop on the

vertex corresponding to the unique generator of G.

Lemma 2.4. If |G| ≥ 3, then Γ∗
a,b(G) contains a vertex x of degree 1 if and only

if a = 0, b ≥ d(G) and x is one of the φG(b) leaves of the star Γ∗
0,b(G)

∼= K1,φG(b).

Proof. Assume that x is a vertex of degree 1 in Γ∗
a,b(G) and that a > 0. We may

assume x = (x1, . . . , xr) with r ∈ {a, b}. Let s = a + b − r. Then there exists
(y1, . . . , ys) such that G = 〈x1, . . . , xr, y1, . . . , ys〉. If xi 6= 1 for some i ∈ {1, . . . , r},
then x is also adjacent to the tuple (xiy1, y2, . . . , ys), a contradiction. So x =
(1, . . . , 1) and consequently y = (y1, . . . , ys) is a tuple of generators for G. For
every π ∈ Sym(s), the element yπ = (y1π, . . . , ysπ) is adjacent to x. Since x has
degree 1, we must have y1 = · · · = ys, G = 〈y1〉 and y1 is the unique element
generating G: this implies |G| ≤ 2. �

The Möbius function µG is the function defined on the lattice of subgroups of G
by

∑

K≥H µG(K) = δH,G, where δG,G = 1 and δH,G = 0 if H 6= G. The following

is a consequence of [23, Section 3].

Lemma 2.5. Let a and b be non-negative integers. Let x = (x1, . . . , xr) ∈ Gr with
r ∈ {a, b} and set K = 〈x1, . . . , xr〉, s = a+ b− r and let δa,b(x) be the degree of x
in Γa,b(G). We have

δa,b(x) =
∑

K≤H

µG(H)|H |s.

In particular |K|s divides the degree δa,b(x) of x in Γa,b(G).

Recall that for a d-generator finite group G, the swap graph Σd(G) is the graph
in which the vertices are the ordered generating d-tuples and in which two vertices
(x1, . . . , xd) and (y1, . . . , yd) are adjacent if and only if they differ only by one entry.

Lemma 2.6. If Σa+b(G) is connected, then Γ∗
a,b(G) is connected.

Proof. Let d = a + b. We write any generating d-tuple ω in the form ω = (α, β),
with α ∈ Ga and β ∈ Gb. Now let σ, σ∗ be two non-isolated vertices of Γ∗

a,b(G):

there exist two generating d-tuples ω = (α, β) and ω∗ = (α∗, β∗) with σ ∈ {α, β}
and σ∗ ∈ {α∗, β∗}. Since Σd(G) is connected, there exists a path in Σd(G) joining
ω to ω∗. In order to complete our proof, it suffices to prove that if

ω1 = (α1, β1), . . . , ωu = (αu, βu)
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is a path in Σd(G), then the vertices α1, β1, α2, β2, . . . , αu, βu belong to the same
connected component of Γ∗

a,b(G). We prove this claim by induction on u. The sen-
tence is clearly true when u = 1. Assume u ≥ 2. By induction α2, β2, . . . , αu, βu
belong to the same connected component of Γ∗

a,b(G); so it is enough to show that

α1, β1, α2, β2 belong to the same connected component. Since (α1, β1) and (α2, β2)
differ for only one entry, either α1 = α2 or β1 = β2. The graph Γ∗

a,b(G) contains
the path β1, α1 = α2, β2 in the first case and the path α1, β1 = β2, α2 in the second
case. �

The swap conjecture states that Σd(G) is connected for every finite group G and
every d ≥ d(G). In [10] it was proved that this conjecture is true if d > d(G), while
in [15] it is proved that it is true also when d = d(G) and G is soluble. So we have:

Corollary 2.7. If G is a finite group and either a+ b > d(G) or a+ b = d(G) and
G is soluble, then Γ∗

a,b(G) is connected.

It remains an open problem to decide whether Γ∗
a,b(G) is connected when a+b =

d(G) and G is unsoluble. We conjecture that the answer is positive. However we
think that proving results in this direction would be quite difficult and would require
deep information about the generation properties of the finite almost simple groups.

We conclude this section, with the following result, that will be used later.

Lemma 2.8. Let N be a normal subgroup of a finite group G and let a and b be
non-negative integers and assume that a + b ≥ d(G). If Γ∗

a,b(G) is connected, then

Γ∗
a,b(G/N) is connected too.

This lemma is an easy consequence of the following result due to Gaschütz [16].

Theorem 2.9. Let G be any group that can be generated by d elements and N
be any finite normal subgroup of G. Let η : G → Ḡ = G/N be the natural homo-
morphism given by η : g → ḡ = Ng for all g ∈ G. Then for any generating d-tuple
(y1, y2, . . . , yd) of elements of G/N there exist elements x1, x2, . . . , xd ∈ G such that
〈x1, x2, . . . , xd〉 = G and x̄i = yi for 1 ≤ i ≤ d.

3. Bounding the diameter of Γ∗
a,b(G) when G is soluble

In [24] it is proved that if G is a 2-generator finite soluble group, then the graph
Γ∗
1,1(G) obtained from the generating graph by removing the isolated vertices has a

very small diameter: indeed diam(Γ∗
1,1(G)) ≤ 3. Moreover diam(Γ∗

1,1(G)) ≤ 2 if G
has the property that |EndG(V )| > 2 for every non-trivial irreducible G-module V
which is G-isomorphic to a complemented chief factor of G. The aim of this section
is to bound diam(Γ∗

a,b(G)) for arbitrary values of a and b when G is soluble.

Before dealing with the general case of a soluble group G, we need to collect in
the next four lemmas a series of results in linear algebra. Denote by Mr×s(F ) the
set of the r × s matrices with coefficients over the field F.

Lemma 3.1. [9, Lemma 3] Let V be a finite dimensional vector space over the field
F . If W1 and W2 are subspaces of V with dimW1 = dimW2, then V contains a
subspace U such that V =W1 ⊕ U =W2 ⊕ U.
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Lemma 3.2. Assume that a and b are non-negative integers. Let V be a vec-
tor space of dimension δ over a finite field F and let x = (v1, . . . , va) and y =
(w1, . . . , wa) be two elements of V a with dimF 〈v1, . . . , va〉 ≥ δ−b and dimF 〈w1, . . . , wa〉 ≥
δ − b. Then there exists z = (z1, . . . , zb) ∈ V b such that 〈v1, . . . , va, z1, . . . zb〉 =
〈w1, . . . , wa, z1, . . . zb〉 = V.

Proof. Let U1 = 〈v1, . . . , va〉, U2 = 〈w1, . . . , wa〉 and s = min{dimF U1, dimF U2}.
Clearly we may assume s < δ. We prove our claim by induction on s. If s = 0, then
b ≥ δ and it suffices to choose z1, . . . , zb so that 〈z1, . . . , zb〉 = V. Assume s 6= 0.
Notice that b + s ≥ δ. Let ṽ1, . . . , ṽs be linearly independent elements of U1 and
w̃1, . . . , w̃s linearly independent elements of U2. Moreover let Ũ1 = 〈ṽ1, . . . , ṽs〉 and

Ũ2 = 〈w̃1, . . . , w̃s〉. Since |Ũ1∪Ũ2| ≤ 2|F |s−1 < |F |δ, there exists z̃ ∈ V \(Ũ1∪Ũ2).
Consider x̃ = (ṽ1, . . . , ṽs, z̃) and ỹ = (w̃1, . . . , w̃s, z̃). Since (s + 1) + (b − 1) ≥ δ
and dimF 〈ṽ1, . . . , ṽs, z̃〉 = dimF 〈w̃1, . . . , w̃s, z̃〉 = s + 1, by induction there exist
z̃1, . . . , z̃b−1 such that 〈ṽ1, . . . , ṽs, z̃, z̃1, . . . , z̃b−1〉 = 〈w̃1, . . . , w̃s, z̃, z̃1, . . . , z̃b−1〉 =
V. Clearly z = (z̃, z̃1, . . . , z̃b−1) satisfies the conditions 〈v1, . . . , va, z̃, z̃1, . . . , z̃b−1〉 =
〈w1, . . . , wa, z̃, z̃1, . . . , z̃b−1〉 = V. �

Lemma 3.3. Let F be a finite field and assume α ≤ β. Given R ∈Mα×β(F ) and
S ∈Mα×γ(F ) consider the matrix

(
R S

)
∈Mα×(β+γ). Assume that rank

(
R S

)
=

α and let πR,S be the probability that a matrix Z ∈Mγ×β(F ) satisfies the condition
rank(R+ SZ) = α. Then

πR,S > 1−
qα

qβ(q − 1)
.

Proof. There exist m ≤ min{α, γ}, X ∈ GL(α, F ) and Y ∈ GL(γ, F ) such that

XSY =

(
Im 0m×(γ−m)

0(α−m)×m 0(α−m)×(γ−m)

)

,

where Im is the identity element in Mm×m(F ). Since

α = rank
(
R S

)
= rank

(

X
(
R S

)
(

Iβ 0β×γ

0γ×β Y

))

= rank
(
XR XSY

)

and
rank(R+ SZ) = rank(X(R+ SZ)) = rank(XR+XSZ)

= rank(XR+XSY (Y −1Z)),

it is not restrictive (replacing R by XR, S by XSY and Z by Y −1Z) to assume

S =

(
Im 0m×(γ−m)

0(α−m)×m 0(α−m)×(γ−m)

)

.

Denote by v1, . . . , vα the rows of R and by z1, . . . , zγ the rows of Z. The fact that
the rows of (R S) are linearly independent implies that vm+1, . . . , vα are linearly
independent vectors of F β. The condition rank(R+SZ) = α is equivalent to asking
that

v1 + z1, . . . , vm + zm, vm+1, . . . , vα

are linearly independent. The probability that z1, . . . , zm satisfy this condition is
(

1−
qα−m

qβ

)(

1−
qα−m+1

qβ

)

· · ·

(

1−
qα−m+(m−1)

qβ

)

.
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Hence

πR,S =

(

1−
qα−m

qβ

)(

1−
qα−m+1

qβ

)

· · ·

(

1−
qα−m+(m−1)

qβ

)

≥ 1−
qα−m(1 + q + · · ·+ qm−1)

qβ

= 1−
qα−m(qm − 1)

qβ(q − 1)
> 1−

qα

qβ(q − 1)
. �

Lemma 3.4. Let F be a finite field. Given positive integers u, v, n, t satisfying
n ≤ min{u, v} and t+ n = u+ v, suppose that A1, A2 ∈Mn×u(F ), B ∈Mn×v(F ),
D1, D2 ∈Mt×u(F ) with the property that

rank
(
B A1

)
= rank

(
B A2

)
= n,

rank

(
A1

D1

)

= rank

(
A2

D2

)

= u.

Then there exists C ∈Mt×v(F ) such that

det

(
B A1

C D1

)

6= 0 and det

(
B A2

C D2

)

6= 0,

except when |F | = 2, n = v and detB 6= 0.

Proof. Let r = rank(B). There exist X ∈ GL(n, F ) and Y ∈ GL(v, F ) such that

XBY =

(
Ir 0r×(v−r)

0(n−r)×r 0(n−r)×(v−r)

)

,

where Ir is the identity element inMr×r(F ). LetA11, A21 ∈Mr×u(F ) andA12, A22 ∈
M(n−r)×u(F ) such that

XA1 =

(
A11

A12

)

, XA2 =

(
A21

A22

)

.

For i ∈ {1, 2}, since

n = rank
(
B Ai

)
= rank

(

X
(
B Ai

)
(

Y 0v×u

0u×v Iu

))

= rank

(
Ir 0r×(v−r) Ai1

0(n−r)×r 0(n−r)×(v−r) Ai2

)

,

it must be rank(Ai2) = n− r. In particular there exists Zi ∈ GL(u, F ) such that

XAiZi =

(
Ai1

Ai2

)

Zi =

(
A∗

i1 A∗
i2

0(n−r)×u−(n−r) In−r

)

,

with A∗
i1 ∈Mr×u−(n−r)(F ) and A

∗
i2 ∈Mr×(n−r)(F ). Notice that

det

(
XBY XAiZi

CY DiZi

)

= det

((
X 0n×t

0t×n It

)(
B Ai

C Di

)(
Y 0v×u

0u×v Zi

))

= det(X) det(Y ) det(Zi) det

(
B Ai

C Di

)

.

This means that it is not restrictive to assume

B =

(
Ir 0r×(v−r)

0(n−r)×r 0(n−r)×(v−r)

)

, Ai =

(
A∗

i1 A∗
i2

0(n−r)×u−(n−r) In−r

)

,
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withA∗
i1 ∈Mr×u−(n−r)(F ), A

∗
i2 ∈Mr×(n−r)(F ). Let C1 ∈Mt×r(F ), C2 ∈Mt×v−r(F ),

Di1 ∈Mt×u−(n−r)(F ), Di2 ∈Mt×(n−r)(F ) such that
(
C1 C2

)
= C and

(
Di1 Di2

)
= Di.

Notice that

det

(
B Ai

C Di

)

= det





Ir 0r×(v−r) A∗
i1 A∗

i2

0(n−r)×r 0(n−r)×(v−r) 0(n−r)×u−(n−r) In−r

C1 C2 Di1 Di2





= (−1)n−r det

(
Ir 0r×(v−r) A∗

i1

C1 C2 Di1

)

= (−1)n−r det





(
Ir 0r×(v−r) A∗

i1

C1 C2 Di1

)




Ir 0r×(v−r) −A∗
i1

0(v−r)×r Iv−r 0(v−r)×u−(n−r)

0u−(n−r)×r 0u−(n−r)×(v−r) Iu−(n−r)









= (−1)n−r det

(
Ir 0r×(v−r) 0r×u−(n−r)

C1 C2 Di1 − C1A
∗
i1

)

= (−1)n−r det
(
C2 Di1 − C1A

∗
i1

)
.

Assume that we can find C1 such that

rank(D11 − C1A
∗
11) = rank(D21 − C1A

∗
21) = u− (n− r)

and let W1,W2 be the subspaces of F t spanned, respectively, by the columns of the
two matrices D11−C1A

∗
11 and D21−C1A

∗
21. By Lemma 3.1, there exists a subspace

U of F t such that F t =W1 ⊕ U =W2 ⊕ U. If C2 is a matrix whose columns are a
basis for U, then

det
(
C2 D11 − C1A

∗
11

)
6= 0 and det

(
C2 D21 − C1A

∗
21

)
6= 0

and C = (C1 C2) is a matrix with the desired property. Set

R1 = DT
11, R2 = DT

21, S1 = A∗T
11 , S2 = A∗T

21 , Z = −CT
1 .

The previous observation implies that a matrix C with the requested properties
exists if, and only if, there exists Z ∈Mr×t(F ) such that

(3.1) rank(R1 + S1Z) = rank(R2 + S2Z) = u− (n− r).

Notice that R1, R2 ∈ Mu−(n−r)×t(F ), S1, S2 ∈ Mu−(n−r)×r(F ) have the property
that

rank
(
R1 S1

)
= rank

(
R2 S2

)
= u− (n− r).

If either |F | = q > 2 or u − (n − r) < t, then, by applying Lemma 3.3 with
α = u− (n− r), β = t, γ = r, we have

πR1,S1
>

1

2
and πR2,S2

>
1

2
and this is sufficient to ensure that a matrix Z with the requested property exists.
Therefore we may assume u− (n− r) = t and q = 2. This implies that v = r, and
so that v = n = r, i.e. detB 6= 0. This concludes the proof. �

The main ingredient in the proof of our results about the diameter of Γ∗
a,b(G)

is the theory of crowns, introduced by Gaschütz in [18]. We recall some properties
of the crowns of a finite soluble group. Let G be a finite soluble group, and let
VG be a set of representatives for the irreducible G-groups that are G-isomorphic
to a complemented chief factor of G. For V ∈ VG let RG(V ) be the smallest
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normal subgroup contained in CG(V ) with the property that CG(V )/RG(V ) is G-
isomorphic to a direct product of copies of V and it has a complement in G/RG(V ).
The factor group CG(V )/RG(V ) is called the V -crown of G. The non-negative
integer δG(V ) defined by CG(V )/RG(V ) ∼=G V δG(V ) is called the V -rank of G and
it coincides with the number of complemented factors in any chief series of G that
are G-isomorphic to V . If δG(V ) 6= 0, then the V -crown is the socle of G/RG(V ).

Proposition 3.5. [25, Proposition 2.4] Let G and VG be as above. Let x1, . . . , xu
be elements of G such that 〈x1, . . . , xu, RG(V )〉 = G for any V ∈ VG. Then
〈x1, . . . , xu〉 = G.

Lemma 3.6. [1, Lemma 1.3.6] Let G be a finite soluble group with trivial Frattini
subgroup. There exists a crown C/R and a non-trivial normal subgroup U of G
such that C = R× U.

Lemma 3.7. [14, Proposition 11] Assume that G is a finite soluble group with
trivial Frattini subgroup and let C,R,U be as in the statement of Lemma 3.6. If
HU = HR = G, then H = G.

Now let V be a finite dimensional vector space over a finite field of prime order.
Let K be a d-generated linear soluble group acting irreducibly and faithfully on V
and fix a generating d-tuple (k1, . . . , kd) of K. For a positive integer u we consider
the semidirect product Gu = V u

⋊ K, where K acts in the same way on each of
the u direct factors. We will use the aforementioned properties of the crowns, in
particular Proposition 3.5 and Lemmas 3.6 and 3.7, to essentially reduce the study
of the graph Γ∗

a,b(G) to the particular case when G ∼= Gu. Put F = EndK(V ).

Let n be the dimension of V over F . We may identify K = 〈k1, . . . , kd〉 with a
subgroup of the general linear group GL(n, F ). In this identification ki becomes
an n × n matrix Xi with coefficients in F ; denote by Ai the matrix In −Xi. Let
wi = (vi,1, . . . , vi,u) ∈ V u. Then every vi,j can be viewed as a 1×n matrix. Denote
the u × n matrix with rows vi,1, . . . , vi,u by Di. The following result is proved in
[8, Section 2].

Proposition 3.8. The group Gu = V u
⋊K can be generated by d elements if and

only if u ≤ n(d− 1). Moreover

(1) rank
(
A1 . . . Ad

)
= n.

(2) 〈k1w1, . . . , kdwd〉 = V u
⋊K if and only if rank

(
A1 · · · Ad

D1 · · · Dd

)

= n+ u.

The next result may seem rather technical, but it provides crucial information
on the graph Γa,b(G) when G ∼= V δ

⋊K.

Proposition 3.9. Let K be a non-trivial d-generator linear soluble group acting
irreducibly and faithfully on V and consider the semidirect product G = V δ

⋊ K
with δ ≤ n(d − 1), where n = dimEndG(V ) V. Let a and b be non-negative integers
such that a + b = d, s ∈ {a, b} and t = d − s. Assume that (t, |F |) 6= (1, 2) and
there exist, for i ∈ {1, 2}, xi1, . . . , xis and y1, . . . , yt in K, and wi1, . . . , wis in V δ

such that

(1) (x11w11, . . . , x1sw1s) and (x21w21, . . . , x2sw2s) are non-isolated vertices be-
longing to Vs in the graph Γ∗

a,b(G),

(2) 〈x11, . . . , x1s, y1, . . . , yt〉 = 〈y1, . . . , yt, x21, . . . , x2s〉 = K.
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Then there exist w1, . . . , wt ∈ V δ with

〈x11, . . . , x1s, y1w1, . . . , ytwt〉 = 〈y1w1, . . . , ytwt, x21, . . . , x2s〉 = G.

Proof. Since V δ
⋊ K is an epimorphic image of V n(d−1)

⋊ K, it suffices to prove
the statement in the particular case where G = V n(d−1)

⋊K. We may identify the
elements xi1, . . . , xis, y1, . . . , yt with matrices Xi1, . . . , Xis, Y1, . . . , Yt ∈ GL(n, F ),
respectively, where F = EndG(V ) and wi1, . . . , wis, w1, . . . , wt ∈ V n(d−1) with ma-
trices Di1, . . . , Dis and C1, . . . , Ct in Mn(d−1)×n(F ), respectively. We now apply
Proposition 3.8. Let

Aij = In −Xij , for i ∈ {1, 2} and j ∈ {1, . . . , s},

Bk = In − Yk, for k ∈ {1, . . . , t}.

Conditions (1) and (2) imply that

rank(A11 . . . A1s B1 . . . Bt) = rank(A21 . . . A2s B1 . . . Bt) = n

and

rank

(
A11 . . . A1s

D11 . . . D1s

)

= rank

(
A21 . . . A2s

D21 . . . D2s

)

= ns.

Moreover our statement is equivalent to saying that there exist tmatrices C1, . . . , Ct ∈
Mn(d−1)×n(F ) with

det

(
A11 . . . A1s B1 . . . Bt

D11 . . . D1s C1 . . . Ct

)

6= 0, det

(
B1 . . . Bt A21 . . . A2s

C1 . . . Ct D21 . . . D2s

)

6= 0.

Put, for i ∈ {1, 2}

Ai = (Ai1 . . . Ais) ∈Mn×ns(F ),

Di = (Di1 . . . Dis) ∈Mn(d−1)×ns(F ),

B = (B1 . . . Bt) ∈Mn×nt(F ).

The existence of C = (C1 . . . Ct) ∈Mn(d−1)×nt(F ) such that

det

(
A1 B
D1 C

)

6= 0, det

(
B A2

C D2

)

6= 0

is ensured by Lemma 3.4. Notice that the fact that K is a non-trivial subgroup
of GL(n, F ) implies that n ≥ 2 if |F | = 2. Moreover if |F | = 2 and rankB =
rank(B1 . . . Bt) = nt, we necessarily have t = d− s = 1. �

We are now ready to prove the main result of this section.

Theorem 3.10. Let G be a finite soluble group, a and b be non-negative integers,
s ∈ {a, b} and t = a+b−s. Assume that either t 6= 1 or G has the following property:
if A is a non-trivial irreducible G-module G-isomorphic to a complemented chief
factor of G, then |EndG(A)| > 2 (this holds in particular when the derived subgroup
of G is either nilpotent or of odd order). Then in the graph Γ∗

a,b(G) given any two
vertices x1, x2 ∈ Vs, there exists y ∈ Vt which is adjacent to both x1 and x2.

Proof. We may assume d := a + b ≥ d(G). We argue by induction on the order
of G. Choose two vertices x1 = (x11, . . . , x1s) and x2 = (x21, . . . , x2s) in Vs. Let
F = Frat(G) be the Frattini subgroup of G. Clearly x1F = (x11F, . . . , x1sF )
and x2F = (x21F, . . . , x2sF ) are vertices of the graph Γ∗

a,b(G/F ). If F 6= 1,

then, by induction, there exists a t-tuple yF = (y1F, . . . , ytF ) which is simulta-
neously adjacent to x1F and x2F in the graph Γ∗

a,b(G/F ). This implies that G =
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〈x11, . . . , x1s, y1, . . . , yt〉F = 〈x21, . . . , x2s, y1, . . . , yt〉F = 〈x11, . . . , x1s, y1, . . . , yt〉 =
〈x21, . . . , x2s, y1, . . . , yt〉, hence y = (y1, . . . , yt) is a t-tuple adjacent to both x1 and
x2 in Γ∗

a,b(G). Therefore we may assume F = 1. In this case, by Lemma 3.6, there

exist a crown C/R of G and a normal subgroup U of G such that C = R × U. We
have R = RG(A) where A is an irreducible G-module and U ∼=G Aδ for δ = δG(A).
By induction, in the graph Γ∗

a,b(G/U), there exists a t-tuple yU = (y1U, . . . , ytU)

which is adjacent to both x1U = (x11U, . . . , x1sU) and x2U = (x21U, . . . , x2sU). In
particular we have

(3.2) 〈x11, . . . , x1s, y1, . . . , yt〉U = 〈x21, . . . , x2s, y1, . . . , yt〉U = G.

We work in the factor group Ḡ = G/R. We have C̄ = C/R = UR/R ∼= U ∼= Aδ

and either A ∼= Cp is a trivial G-module and Ḡ ∼= (Cp)
δ or Ḡ = Ū ⋊ H̄ ∼= Aδ

⋊K
where K ∼= H̄ acts in the same way on each of the δ factors of Aδ and this action
is faithful and irreducible. Since Ḡ is d-generated, we have δ ≤ d if A is a trivial
G-module, δ ≤ n(d− 1), where n = dimEndG(A)A otherwise.

By Lemma 3.2 in the first case and by Proposition 3.9 in the second case, there
exist u1, . . . , ut ∈ U with

〈x̄11, . . . , x̄1s, ȳ1ū1, . . . , ȳtūt〉 = 〈ȳ1ū1, . . . , ȳtūt, x̄21, . . . , x̄2s〉 = Ḡ,

i.e.

(3.3) 〈x11, . . . , x1s, y1u1, . . . , ytut〉R = 〈y1u1, . . . , ytut, x21, . . . , x2s〉R = G.

In view of Lemma 3.7, from (3.2) and (3.3), we obtain that

〈x11, . . . , x1s, y1u1, . . . , ytut〉 = 〈y1u1, . . . , ytut, x21, . . . , x2s〉 = G. �

Now from Theorem 3.10 and [24, Theorem 1] we easily deduce the following
result.

Corollary 3.11. Let G be a finite soluble group and let a and b be non-negative
integers. Then

diam(Γ∗
a,b(G)) ≤ 4.

Moreover

(1) Assume a = b. If either G has the property that |EndG(V )| > 2 for ev-
ery non-trivial irreducible G-module V which is G-isomorphic to a comple-
mented chief factor of G or a 6= 1, then diam(Γ∗

a,a(G)) ≤ 2. Otherwise
diam(Γ∗

a,a(G)) ≤ 3.
(2) Assume a < b. If either G has the property that |EndG(V )| > 2 for ev-

ery non-trivial irreducible G-module V which is G-isomorphic to a comple-
mented chief factor of G or a 6= 1, then diam(Γ∗

a,b(G)) ≤ 3.

In the remaining part of this section we want to prove that Theorem 3.10 does
not remain true, when t = 1, if we drop out the assumption that G has the property
that |EndG(A)| > 2 whenever A is a non-trivial irreducible G-module G-isomorphic
to a complemented chief factor of G. Indeed we want show that, for every d ≥ 2, it
can be constructed a d-generator soluble group G with the property that Γ∗

1,d−1(G)

contains two distinct vertices α1 = (g1,1, . . . , g1,d−1) and α2 = (g2,1, . . . , g2,d−1)
without a common adjacent vertex. First we note that Proposition 3.8 has the
following corollary.
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Corollary 3.12. Let d be a positive integer with d ≥ 2, let V = F2 × F2, where F2

is the field with 2 elements and let Γ = GL(2, 2)⋉ V u with u = 2(d − 1). Assume
that 〈k1, . . . , kd〉 = GL(2, 2) and let γ1 = k1(v11, . . . , v1u), . . . , γd = kd(vd1, . . . , vdu)
in Γ. We have Γ = 〈γ1, . . . , γd〉 if and only if







1− k1 . . . 1− kd
v11 . . . vd1
. . . . . . . . .
v1u . . . vdu







6= 0.

Now let H = GL(2, 2)×GL(2, 2) and let

W = (V11 × · · · × V1u)× (V21 × · · · × V2u)

be the direct product of 2u 2-dimensional vector spaces over the field F2 with two
elements. We define an action of H on W by setting

((v11, . . . , v1u), (v21, . . . , v2u))
(x,y) = ((vx11, . . . , v

x
1u), (v

y
21, . . . , v

y
2u))

and we consider the semidirect product G = H ⋉W. Let

N1 :=CG(V21) = · · · = CG(V2u) = {(k, 1) | k ∈ GL(2, 2)},

N2 :=CG(V11) = · · · = CG(V1u) = {(1, k) | k ∈ GL(2, 2)}.

A set of representatives for the G-isomorphism classes of the complemented chief
factors of G contains precisely 5 elements:

• Z, a central G-module of order 2, with RG(Z) = G′ = SL(2, 2)2 ⋉W ;
• U1, a non-central G-module of order 3, with RG(U1) = N2 ⋉W ;
• U2, a non-central G-module of order 3, with RG(U2) = N1 ⋉W ;
• V11, with RG(V11) = V21 × · · · × V2u ×N2;
• V21, with RG(V21) = V11 × · · · × V1u ×N1.

Let
(x1, y1)((v111, . . . , v11u), (v121, . . . , v12u)) = g1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(xd, yd)((vd11, . . . , vd1u), (vd21, . . . , vd2u)) = gd.

We want to apply Proposition 3.5 to check whether 〈g1, . . . , gd〉 = G. The three
conditions

〈g1, . . . , gd〉RG(Z) = G, 〈g1, . . . , gd〉RG(U1) = G, 〈g1, . . . , gd〉RG(U2) = G

are equivalent to 〈g1, . . . , gd〉W = G, i.e. to 〈(x1, y1), . . . , (xd, yd)〉 = H. Moreover
〈g1, . . . , gd〉RG(V11) = G if and only if

〈x1(v111, . . . , v11u), . . . , xd(vd11, . . . , vd1u)〉 = (V11 × · · · × V1u)⋊GL(2, 2),

〈g1, . . . , gd〉RG(V21) = G if and only if

〈y1(v121, . . . , v12u), . . . , yd(vd21, . . . , vd2u)〉 = (V21 × · · · × V2u)⋊GL(2, 2).

Applying Corollary 3.12 we conclude that

〈g1, . . . , gd〉 = G
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if and only if the following conditions are satisfied:

(1) 〈(x1, y1), . . . , (xd, yd)〉 = H = GL(2, 2)×GL(2, 2),

(2) det







1− x1 . . . 1− xd
v111 . . . vd11
. . . . . . . . .
v11u . . . vd1u







6= 0,

(3) det







1− y1 . . . 1− yd
v121 . . . vd21
. . . . . . . . .
v12u . . . vd2u







6= 0.

Consider the following elements of GL(2, 2):

x :=

(
1 0
1 1

)

, y :=

(
1 1
1 0

)

, z :=

(
1 1
0 1

)

,

and the following elements of F2
2:

0 = (0, 0), e1 = (1, 0), e2 = (0, 1).

Let
a11 :=(x, x)((0, e2, 0, . . . , 0)), (0, e2, 0, . . . , 0)),

a12 :=(x, x)((e1, e2, 0, . . . , 0), (e1, e2, 0, . . . , 0)),

a2 :=((0, 0, e1, e2, 0, . . . , 0), (0, 0, e1, e2, 0, . . . , 0)),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ad−1 :=((0, . . . , 0, e1, e2), (0, . . . , 0, e1, e2)),

b1 :=(y, z)((e1, 0, . . . , 0), (e1, 0, . . . , 0)),

b2 :=(y, z)((0, . . . , 0), (e1, 0, . . . , 0)).

It can be easily checked that either a11, a2, . . . , ad−1, b1 as a12, a2, . . . , ad−1, b2 satisfy
the three conditions (1), (2) (3) and therefore

〈a11, a2, . . . , ad−1, b1〉 = 〈a12, a2, . . . , ad−1, b2〉 = G.

Now we want to prove that there is no b ∈ G with

〈a11, a2, . . . , ad−1, b〉 = 〈a12, a2, . . . , ad−1, b〉 = G.

Let b = (h1, h2)((v11, . . . , v1u), (v21, . . . , v2u)), and assume by contradiction that
〈a11, a2, . . . , ad−1, b〉 = 〈a12, a2, . . . , ad−1, b〉 = G. We must have in particular that
condition (1) holds, i.e. 〈(x, x), (h1, h2)〉 = H. Since (x, x) has order 2 and H cannot
be generated by two involutions (otherwise it would be a dihedral group) at least
one of the two elements h1, h2 must have order 3: it is not restrictive to assume
h1 = y. Let

A =
(
1− x 02×2 · · · 02×2

)
=

(
0 0 0 · · · 0
1 0 0 . . . 0

)

, B = 1− y =

(
0 1
1 1

)

C1 =





0 0
0 1

02×u−2

0u−2×2 Iu−2



 , C2 =





1 0
0 1

02×u−2

0u−2×2 Iu−2



 ,
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D =






v11
...
v1u




 =

(
D1

D2

)

with D2 ∈Mu−2×2(F2) and D1 =

(
α β
γ δ

)

.

Conditions (2) must be satisfied, hence we must have

det

(
A B
C1 D

)

= det

(
A B
C2 D

)

= 1.

However

det

(
A B
C1 D

)

= det









0 0
1 0

02×u−2
0 1
1 1

0 0
0 1

02×u−2 D1

0u−2×2 Iu−2 D2









= det







0 0 0 1
1 0 1 1
0 0 α β
0 1 γ δ







= α,

det

(
A B
C2 D

)

= det









0 0
1 0

02×u−2
0 1
1 1

1 0
0 1

02×u−2 D1

0u−2×2 Iu−2 D2









= det







0 0 0 1
1 0 1 1
1 0 α β
0 1 γ δ







= α+ 1.

However, since α ∈ F2 either α = 0 or α + 1 = 0, so there is no b ∈ G with
〈a11, a2, . . . , ad−1, b〉 = 〈a12, a2, . . . , ad−1, b〉 = G.

We conclude this section noticing that Theorem 3.10 can be applied to bound
the diameter of the swap graph.

Theorem 3.13. Suppose that a finite soluble group G has the following property:
if A is a non-trivial irreducible G-module G-isomorphic to a complemented chief
factor of G, then |EndG(A)| > 2 (this holds in particular when the derived subgroup
of G is either nilpotent or of odd order). If d ≥ d(G), then the diameter of the swap
graph Σd(G) is at most 2d− 1.

Proof. Assume that G = 〈a1, . . . , ad〉 = 〈b1, . . . , bd〉. By Theorem 3.10, there exists
x1 ∈ G such that G = 〈x1, a2, . . . , ad〉 = 〈x1, b2, . . . , bd〉. Applying d − 1 times
Theorem 3.10, we find elements xi, for 1 ≤ i ≤ d− 1 satisfying

G = 〈x1, . . . , xi−1, xi, ai+1, . . . , ad〉 = 〈x1, . . . , xi−1, xi, bi+1, . . . , bd〉.

Hence Σd(G) contains the following path of length 2d− 1:

(a1, . . . , ad),
(x1, a2, . . . , ad),

(x1, x2, a3, . . . , ad),
...

(x1, . . . , xd−1, ad),
(x1, . . . , xd−1, bd),

(x1, . . . , xd−1, bd−1, bd),
...

(x1, b2, . . . , bd),
(b1, . . . , bd).

Since this path has length 2d− 1, we are done. �
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4. Direct powers of simple groups

In this section we will try to generalize some results proved in [11] concerning the
generating graph of direct powers of non-abelian simple groups. As a by-product, we
will see that the bounds on the diameter of the graphs Γ∗

a,b(G), proved in Section 3,
does not remain true if we drop the solubility assumption: for every positive integer
η and every pair a, b of positive integers, a finite group G can be constructed such
that d(G) = a+ b and Γ∗

a,b(G) is connected with diameter at least η.
Let S be a non-abelian finite simple group and denote by A the automorphism

group Aut(S) of S. As usual we identify S with the subgroup of A consisting of
the inner automorphisms. Let d ≥ 2 be a positive integer and define τ = τd(S)
to be the largest positive integer r such that Sr, the direct product of r copies of
S, can be generated by d elements. Notice that the group Sr cannot be generated
by d elements whenever r is larger than the number of A-orbits on the set of
d-tuples generating S. Actually, τ is equal to the number of A-orbits on ordered d-
tuples of generators for S and, for arbitrary elements x1 = (x1,1, . . . , x1,τ ), . . . , xd =
(xd,1, . . . , xd,τ ) of Sτ , we have that Sτ = 〈x1, . . . , xd〉 if and only if the d-tuples
(x1,i, . . . , xd,i) are distinct representatives for these orbits for 1 ≤ i ≤ τ . Let
K = Aut(Sτ ). Recall that K ∼= A ≀ Sym(τ). Clearly K ≤ Aut(Γa,b(S

τ )) for every
a, b with a + b = d. The following easy remark will play a crucial role in our
discussion.

Lemma 4.1. Assume Sτ = 〈x1, . . . , xd〉. If S
τ = 〈y1, . . . , yd〉, then there exists

k ∈ K such that (y1, . . . , yd) = (xk1 , . . . , x
k
d).

Proof. Assume xi = (xi,1, . . . , xi,τ ), yj = (yj,1, . . . , yj,τ ) for 1 ≤ i, j ≤ d. Both
(x1,1, . . . , xd,1), . . . , (x1,τ , . . . , xd,τ ) and (y1,1, . . . , yd,1), . . . , (y1,τ , . . . , yd,τ ) form a
set of representatives for the A-orbits of the set of generating d-tuples for S.
So there exist π ∈ Sym(τ) and (a1, . . . , aτ ) ∈ Aτ such that (y1,iπ, . . . , yd,iπ) =
(x1,i, . . . , xd,i)

ai for each i ∈ {1, . . . , τ}. It follows that (y1, . . . , yd) = (xk1 , . . . , x
k
d)

for k = (a1, . . . , aτ )π ∈ K. �

Corollary 4.2. Let τ = τa+b(S). Then the graph Γ∗
a,b(S

τ ) is edge-transitive.

Now we will introduce other notations, useful to study the graph Γa,b(S
τ ). Fix

a vertex x = (x1, . . . , xa) in the part Va of Γ∗
a,b(S

τ ) corresponding to the (a)-tuples

and a vertex y = (y1, . . . , yb) in the part Vb corresponding to the (b)-tuples and let
C = CK(x) and D = CK(y). To describe more precisely C we need the following
information. Let s1, . . . , su be a set of representatives for the A-orbits of Sa that
can be completed to a generating d-tuple of S. Every vertex x ∈ Va can be viewed
as an a × τ matrix (xi,j) with xi,j ∈ S. Denote by τi the number of columns of x
that are A-conjugate to si. By Corollary 4.2 this number is independent on the
choice of x. In particular x is K-conjugate to x̄ with

x̄ = (s1, . . . , s1
︸ ︷︷ ︸

τ1 terms

, s2, . . . , s2
︸ ︷︷ ︸

τ2 terms

, . . . , su, . . . , su
︸ ︷︷ ︸

τu terms

).

It follows that C ∼= CK(x̄) =
∏

1≤i≤uCA(si) ≀ Sym(τi). Clearly we have a similar

description for D = CK(y), with the only difference that the role of s1, . . . , su will
be played by a set of representatives t1, . . . , tv for the A-orbits of Sb that can be
completed to a generating d-tuple of S.
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Lemma 4.3. Assume 1 ≤ a ≤ b with (a, b) 6= (1, 1). For every i 6= 1, there exists
ȳi ∈ Va such that

(1) x̄ and ȳi have a common neighbour in Γ∗
a,b(S

τ ).

(2) The first column of ȳi is A-conjugate to si.
(3) x̄ and ȳi differ only for 2-columns.

Proof. Since b ≥ 2 and d(S) = 2, there exists i such that si = (1, . . . , 1). Hence we
may assume s1 = (1, . . . , 1). Let z ∈ Vb be adjacent to x̄ in Γ∗

a,b(S
τ ). We identify z

with a matrix (t1, . . . , tτ ) where tj ∈ Sb for every j. The columns of the matrix

E :=

(
s1 . . . s1 . . . su . . . su
t1 . . . tτ1 . . . tτ−τu+1 . . . tτ

)

are a set of representatives of the A-orbits on the generating d-tuples of S. Since
s1 = (1, . . . , 1), t1 must be a generating b-tuple of S, so (si, t1) (being a generating
d-tuple of S) is A-conjugate to the j-th column of E for some τ1 < j ≤ τ. This
means that the j-th column of E is

(
si
tα1

)

for some α ∈ A. It follows that if we replace the first column of E with
(

sα
−1

i

t1

)

and the j-th column with
(
s1
tα1

)

we get a matrix E∗, corresponding to an edge in Γ∗
a,b(S

τ ) between z and an element

ȳi, obtained from x̄ by replacing the first column with sα
−1

i and the jth-column
with s1. �

Theorem 4.4. Let τ = τa+b(S). Then the graph Γ∗
a,b(S

τ ) is connected.

Proof. Clearly the star Γ∗
0,b(S

τ ) is connected and Γ∗
1,1(S

τ ) is connected by [11,

Theorem 3.1], so we may assume 0 < a ≤ b and (a, b) 6= (1, 1). In particular b ≥ 2.
Let Wa be the set of the elements of Va which belong to the connected component
of Γ∗

a,b(S
τ ) which contains the vertex x̄. The set Wa is a block for the action of

K on Va. In particular the setwise stabilizer H of Wa in K contains the point
stabilizer C = CK(x̄) =

∏

1≤i≤u CA(si) ≀ Sym(τi). We identify K with A ≀ Sym(τ):

in particular every element k ∈ K can be written in the form k = (a1, . . . , aτ )σ
with ai ∈ A and σ ∈ Sym(τ) and the map π : k 7→ σ is a group homomorphism
from K to Sym(τ).

Since C ≤ H , we have Cπ =
∏

1≤i≤u Sym(τi) ≤ Hπ. The orbits of Cπ are

Ω1 = {1, . . . , τ1}, Ω2 = {τ1 + 1, . . . , τ1 + τ2}, . . . ,Ωu = {τ − τu + 1, . . . , τ}. Let
j ∈ {2, . . . , u} and choose ȳj as in Lemma 4.3. It follows from Corollary 4.2 that

ȳj = x̄kj for some kj ∈ K. In particular ȳj ∈ Wa ∩W
kj
a so, since Wa is a block,

Wa = W
kj
a and kj ∈ H. Let σj = kπj : we have σj = (1, ij) with ij ∈ Ωj . This

means that Sym(τ) = 〈σ2, . . . , σu, Sym(τ1), . . . , Sym(τu)〉 ≤ 〈k2, . . . , ku, C〉
π ≤ Hπ,

hence Hπ = Sym(τ). We identify S with Inn(S) ≤ A. Let z ∈ A and consider
k = (z, 1, . . . , 1) ∈ K. Clearly x̄k = x̄, hence k ∈ H. But thenH contains (z, 1, . . . , 1)
for every z ∈ A: being Hπ = Sym(τ), this implies that H = K.
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Now we have Va = x̄K = x̄H ≤Wa, hence Wa = Va and Γ∗
a,b(S

τ ) is a connected
graph. �

Let S = SL(2, 2p) with p > 3. We are going to prove that

lim
p→∞

diam(Γ∗
a,b(S

τa+b(S))) = ∞,

for every pair a, b of positive integer. Let q = 2p. We have |S| = (q2 − 1)q and
A = Aut(S) = S⋊ 〈φ〉 with φ the Frobenius automorphism. Note that, since p 6= 3,
then p does not divide |S|; in particular 〈φ〉 is a Sylow p-subgroup of A. Given
k = (u1, . . . , uτ )π ∈ K ≤ A ≀ Sym(τ), let σk be the number of i ∈ {1, . . . , τ} with
ui /∈ S.

Lemma 4.5. Let k ∈ K.

(1) If k ∈ C, then

σk ≤

{

6a · |S|b

p if a 6= 1

3 · |S|d−1

pq otherwise.

(2) If k ∈ D, then

σk ≤

{

6b · |S|a

p if b 6= 1

3 · |S|d−1

pq otherwise.

Proof. It suffice to prove (1) (the argument for (2) is the same). Assume that
s ∈ S has the property that |CA(s)| is divisible by p. By Sylow Theorem, φ ∈
CA(s)

α = CA(s
α) for some α ∈ A. It follows that sα ∈ CS(φ) = SL(2, 2) ∼= Sym(3).

In particular, exactly three of the representatives η1, . . . , ηv for the A-orbits of S
satisfy the condition that p divides |CA(ηi)|. More precisely we may assume:

(1) η1 = 1;
(2) |η2| = 2 and |CA(η2)| = p · q;
(3) |η3| = 3 and |CA(η3)| = p · (q + 1).

First assume a 6= 1. We order the elements s1, . . . , su ∈ Sa in such a way that
CA(si) 6≤ S if and only if i ≤ l. If i ≤ l and si = (z1, . . . , za), then we may assume
{z1, . . . , za} ⊆ CS(φ) ∼= Sym(3). Hence

(4.1) l ≤ 6a.

Moreover if (si, t) and (si, t
∗) are generating d-tuples for S which are not A-

conjugate, then t and t∗ belong to different orbits for the action of CA(si) on
Sb, so for i ∈ {1, . . . , l}

(4.2) τi ≤
|S|b

|CA(si)|
≤

|S|b

p
and σk ≤ 6a ·

|S|b

p
.

The case a = 1 follows with a similar argument, noticing that if i ≤ l, then si ∈
{η1, η2, η3} and that |CA(ηj)| ≤ |S|/pq for j ∈ {1, 2, 3}. �

Theorem 4.6. Let S = SL(2, 2p) with p > 3, assume that a ≤ b are positive
integers and let τ = τa+b(S).

(1) If a 6= 1 and p is large enough, then

diam(Γ∗
a,b(S

τ )) ≥
|S|a−1

2 · 6a
− 1.
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(2) If a = 1 and p is large enough, then

diam(Γ∗
1,b(S

τ )) ≥
2p

6
− 1.

Proof. By [22], the probability P (S) of generating a simple group with 2 elements
tends to 1 as |S| tends to infinity. In particular if p is large enough, then

(4.3) τ ≥
|S|d

2|A|
=

|S|d−1

2p
.

Case 1: a 6= 1. First assume a 6= b. Let (x̄, ȳ) be an edge of Γ∗
a,b(S

τ ) with x̄ ∈ Sa·τ

and ȳ ∈ Sb·τ and let C = CK(x̄), D = CK(ȳ). We may identify the elements of Va
with the right cosets of C in K and the elements of Vb with the right cosets of D
in K : there is an edge between Cx and Dy if and only if Cx∩Dy 6= ∅. Assume in
particular that our graph contains the path (Cx1, Dy, Cx2): there exist c1, c2 ∈ C
and d1, d2 ∈ D with

c1x1 = d1y, c2x2 = d2y,

hence

x2 = c−1
2 d2y = c−1

2 d2d
−1
1 c1x1 ∈ CDCx1.

More generally if there exists a path of length 2r from Cx1 to Cx2 then

x2 ∈ C DC · · ·DC
︸ ︷︷ ︸

r terms

x1.

Assume diam(Γ∗
a,b(S

τ )) ≥ 2r. By the previous paragraph

K = C DC · · ·DC
︸ ︷︷ ︸

r terms

,

and in particular there exist c0, . . . , cr ∈ C and d0, . . . , dr−1 ∈ D such that

(4.4) (φ, . . . , φ) = c0d0 · · · cr−1dr−1cr.

However, by Lemma 4.5

c0d0 · · · cr−1dr−1cr = (w1, . . . , wτ )ρ

with wi /∈ S for at most

(r + 1)

(

6a ·
|S|b

p

)

+ r

(

6b ·
|S|a

p

)

≤
(2r + 1) · 6a · |S|b

p

choices of i. Hence
(2r + 1) · 6a · |S|b

p
≥ τ ≥

|S|d−1

2 · p

and this implies

2r + 1 ≥
|S|a−1

2 · 6a
.

Now assume a = b. We may choose x̄ = (x1, . . . , xτ ) and ȳ = (y1, . . . , yτ ) with the
property: if (xi, yi) and (yi, xi) are not A-conjugate, then there exist i∗ such that
xi∗ = yi and yi∗ = xi. Now let J = {i | (xi, yi) and (yi, xi) are not A-conjugate}.
We have already noticed that there exists k = (a1, . . . , aτ )σ ∈ K such that ȳ = x̄k

and x̄ = ȳk. Clearly k can be chosen so that:

(1) if i ∈ J, then iσ = i∗ and ai = 1;
(2) if i /∈ J, then iσ = i and (xi, yi)

ai = (yi, xi).
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If i /∈ J, then x
a2
i

i = xi and y
a2
i

i = yi, hence, since S = 〈xi, yi〉, we have a2i = 1.
Since 2 does not divide |A/S| = p, it must be ai ∈ S. We can conclude that ai ∈ S
for each i ∈ {1, . . . , τ}. By [11, Corollary 5.2], there exist r ≤ diam(Γ∗

a,a(S
τ )) and

ci = (ui1, . . . , uiτ )σi ∈ C such that (φ, . . . , φ) = c0kc1 · · · kcr. On the other hand,
by Lemma 4.5

c0kc1 · · · kcr = (w1, . . . , wτ )ρ

with wi /∈ S for at most

(r + 1) · 6a ·
|S|a

p
choices of i. Hence

(r + 1) · 6a ·
|S|a

p
≥ τ ≥

|S|d−1

2p
and this implies

r + 1 ≥
|S|a−1

2 · 6a
.

Case 2: a = 1. The case a = b = 1 is considered in [11, Theorem 5.4] so we may
assume a 6= b. The argument is similar to the one used in Case 1. Indeed again we
can say that (φ, . . . , φ) = c0d0 · · · cr−1dr−1cr and so, by Lemma 4.5,

(r + 1)

(

3 ·
|S|d−1

pq

)

+ r

(

6d−1 ·
|S|

p

)

≤
(2r + 1) · 3 · |S|d−1

pq

choices of i. Hence
(2r + 1) · 3 · |S|d−1

pq
≥ τ ≥

|S|d−1

2 · p
and this implies

2r + 1 ≥
q

6
.

�

We conclude this section with the following application of Theorem 4.4.

Theorem 4.7. Assume that G is a direct product of finite non-abelian simple
groups and let a, b non-negative integers with a + b ≥ d(G). Then Γ∗

a,b(G) is con-
nected.

Proof. Assume G = Sn1

1 × · · · × Snr
r with S1, . . . , Sr pairwise non isomorphic non-

abelian finite simple groups. We prove our statement by induction on r. Let d = a+b
and let τi = τd(Si). We have that Sni

i is an epimorphic image of Sτi
i , so il follows

from Theorem 4.4 and Lemma 2.8 that Γ∗
a,b(S

ni

i ) is connected. In particular our

statement is true if r = 1. Suppose that r ≥ 2 and let Γ1 = Γ∗
a,b(S

n1

1 × · · · × S
nr−1

r−1 )

and Γ2 = Γ∗
a,b(S

nr
r ). By induction Γ1 and Γ2 are connected graphs. If a = b, then Γ1

and Γ2 are not bipartite, so by [35, Theorem 1] we conclude that Γ∗
a,b(G) = Γ1×Γ2

is connected. Suppone a 6= b. In this case Γ1 is a connected bipartite graph, with
two parts A ⊆ (Sn1

1 × · · · × S
nr−1

r−1 )a and B ⊆ (Sn1

1 × · · · × S
nr−1

r−1 )b and Γ2 is a

connected bipartite graph, with two parts C ⊆ (Snr
r )a and D ⊆ (Snr

r )b. It can be
easily seen that Γ∗

a,b(G) can be identified with the subgraph of Γ1 × Γ2 induced

by (A × C) ∪ (B × D). Now let (x, y) be an edge of Γ1, with x ∈ A and y ∈ B.
The subgraph of Γ∗

a,b(G) induced by ({x} × C) ∪ ({y} × D) is isomorphic to Γ2,
hence is connected. Since this is true for every egde of Γ1 and Γ1 is connected, we
immediately conclude that Γ∗

a,b(G) is connected as well. �
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5. Properties of G that can be recognized from the graphs Γ∗
a,b(G).

In this section we will denote by Λ(G) the collection of all the connected compo-
nents of the graphs Γa,b(G), for all the possible choices of a ≤ b in N. However for
each of this graph, we do not assume to know from which choice of a, b it arises. In
particular Λ(G) contains lot of graphs just consisting of only one vertex and with
no edge. From these graphs we cannot recover any information, so we may restrict
our attention to the collection Λ∗(G) of all the connected components of the graphs
Γ∗
a,b(G), for all a, b ∈ N. We deal with two questions:

Question 1. Given a graph Γ ∈ Λ∗(G), can we determine the integers a, b such
that Γ is a connected component of Γ∗

a,b(G) ?

Question 2. Which information on G can be deduced from the knowledge of Λ∗(G)?

We already noticed that a graph Γ ∈ Λ∗(G) can contain loops: we will denote

by Γ̃ the graph obtained from Γ by deleting the loops. In this way we produce a
new collection Λ̃∗(G) of graphs. In this section we will also prove that Λ∗(G) can

be reconstructed from the knowledge of Λ̃∗(G) which means that we do not lose
information if we remove all the loops from the graphs (see Corollary 5.5).

Since a bipartite graph has a unique partition (up to switching the two sets)
if and only if it is connected, Corollary 2.7 tell us that when a 6= b, each con-
nected component Γ∗

a,b(G) is a bipartite graph whose unique partition has two

parts, namely Va and Vb, corresponding to elements of Ga and Gb respectively.
Note that if a + b = d(G) and G is not soluble, then we do not know whether
Γ∗
a,b(G) is connected.

The generating properties of cyclic groups are quite peculiar and exceptional
from many points of view. As a result of this, one is immediately able to decide
from the knowledge of Λ∗(G) whether G is cyclic.

Proposition 5.1. From the knowledge of either Λ∗(G) or Λ̃∗(G) we may recognize
whether G is cyclic, and, when G is cyclic, determine |G|.

Proof. The case G = 1 is uniquely characterized by the fact that Λ∗(G), and con-

sequently Λ̃∗(G), contains infinitely many copies of the complete graph K2: indeed
Γ∗
0,b(G)

∼= K2 for every positive integer b. Now assume that G is a non-trivial cyclic

group: only in this case Λ∗(G) contains two stars (corresponding to Γ∗
0,1(G) and

Γ∗
0,2(G), respectively) with the property that there is no bipartite graph in Λ∗(G)

with the same number of edges. If we imagine removing the loops, then we can
still recognize the cyclic groups since we have two situations: either we see only two
stars of type K1,1, or we still see two stars with no bipartite graphs with the same
number of edges. In the former case the group is C2 and in the latter one it is any
other cyclic group of order greater than two. Once we know that G is a non-trivial
cyclic group, we consider all the stars in Λ∗(G) sorted by the increasing number of
leaves ui, for i ≥ 0: they correspond to the graphs Γ∗

0,i+1(G). Note that Γ∗
1,2(G)

is the only bipartite graph in Λ∗(G) with u2 edges and |G| is the cardinality of the
smallest set in the partition of Γ∗

1,2(G). �

Since we can identify the cyclic groups, from now on we assume, without lost
of generality, that d(G) ≥ 2. By Lemma 2.3 a graph Γ ∈ Λ∗(G) is either bipartite
or contains a 3-cycle. There is a loop around a vertex x = (x1, . . . , xr) if and only
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if G = 〈x1, . . . , xr〉 and Γ is not bipartite. In this case x is adjacent to all other
vertices of Γ∗

r,r(G). We want to analyse in which other cases a vertex of a graph in
Λ∗(G) can have this last property.

Theorem 5.2. Let G be a non-cyclic finite group. Assume that there exists Γ ∈
Λ∗(G) containing a 3-cycle and a vertex x which is adjacent to all the other vertices
of Γ. Then either there is a loop in Γ around x or d(G) = 2 and G is isomorphic
either to the Klein group or to the dihedral group Dp, for some odd prime p.

Proof. Assume that x = (x1, x2, . . . , xr). Since Γ contains a 3-cycle, it is a con-
nected component of Γ∗

r,r(G), for r ≥ 1. In particular there exists y = (y1, . . . , yr)
such that G = 〈x1, x2, . . . , xr, y1, . . . , yr〉.

First assume r ≥ 2. If x has at least two distinct entries, say xi and xj with
i < j, then

x∗ = (x1, . . . , xj , . . . , xi, . . . , xr)

is also a vertex of Γ, since it is adjacent to y. Hence x is adjacent to x∗ and G
is generated by the r elements x1, . . . , xr: in this case we have a loop around x.
If x1 = · · · = xr and x1 6= 1, then again x∗ = (x1, 1, . . . , 1) is adjacent to y and
consequently to x and this implies that G is cyclic. Finally if x = (1, . . . , 1), then
any tuple of type (z, 1, . . . , 1), with z ∈ G, is adjacent to y and consequently to x
and again G is cyclic.

Now assume r = 1. As a consequence Γ is a connected component of the gen-
erating graph Γ∗

1,1(G) and d(G) = 2. Since x is a non-isolated vertex, there exists
y such that G = 〈x, y〉. First of all observe that x must have order 2, otherwise
also x−1 would be adjacent to y and, in particular to x, contradicting the fact that
G is 2-generated. If x is not the unique involution in Γ, then G is generated by
two involutions and so it is a dihedral group. Otherwise, since the element xy also
generates G with y, we have x = xy. Therefore x belongs to x ∈ Z(〈x, y〉) = Z(G)
and, consequently, G is abelian and Γ = Γ∗

1,1(G). Since G is not cyclic, we must
have that 〈x〉 has a cyclic complement, say H , in G and that |H | is even: but in
this case H contains an involution, say z, such that xz is a non-isolated involution,
contradicting the uniqueness of x.

We have so proved that G is isomorphic to the semidirect product of 〈x〉 ≃ C2

with 〈t〉 ≃ Cm, for some integer m. If a prime p divides m, then the element xtp

generates G together with t. This implies x = xtp (otherwise xtp would be adjacent
to x). Hence tp = 1 and n = p. If p = 2, then G ∼= C2 × C2, otherwise G ∼= Dp.

Note, conversely, that if either G ∼= C2 × C2 or G ∼= Dp, then any involution of
G is adjacent to all the other vertices of Γ1,1(G). �

Corollary 5.3. Let G be any non-cyclic group which is isomorphic neither to
C2 ×C2 nor to Dp, for any odd prime p, and let Γ ∈ Λ∗(G). There is a loop around
a vertex x of Γ if and only if Γ contains a 3-cycle and x is adjacent to all the other
vertices of Γ.

Due to the exceptional behavior of the loops in Γ ∈ Λ∗(G) when G is either
C2 × C2 or D2p, it is useful to be able to determine from Λ∗(G) whether or not we
are in one of these cases.

Proposition 5.4. From the knowledge of either Λ∗(G) or Λ̃∗(G) we may recognize
whether G is isomorphic either to the Klein group or to the dihedral group Dp for
some odd prime p, and, in that case, determine |G|.
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Proof. It follows from Theorem 5.2 that G is either the Klein group or the dihedral
group Dp if and only if every Γ ∈ Λ∗(G) containing a 3-cycle contains also a vertex
adjacent to all the other vertices. In this case G is the Klein group if and only if
Λ∗(G) contains the complete graph K3. If K3 is not in Λ∗(G), then G ∼= Dp for some
p. In order to determine p, we consider all the stars in Λ∗(G) : they correspond to
Γ∗
0,r(G)

∼= K1,φG(r), with r ≥ 2: so we may determine φG(2) = minr≥2 φG(r). On
the other hand

φG(2) = 4p2
(

1−
1

4

)(

1−
1

p

)

,

which is an injective function on p, whenever p ≥ 2. Hence by the knowledge of
φG(2) we recognize p and consequently |G|. �

Corollary 5.5. Let G be a finite group. We may determine Λ∗(G) from the knowl-

edge of Λ̃∗(G).

Proof. By Propositions 5.1 and 5.4 we may assume that G is neither cyclic nor
dihedral of order 2p. But then, by Corollary 5.3, assuming that we have removed
all loops in advance, we can easily recognize which vertices have a loop around and
put them back. �

Definition 5.6. Given Γ ∈ Λ∗(G), let e(Γ) be the number of edges, excluding the
loops, l(Γ) be the number of loops and set ν(Γ) = 2e(Γ) + l(Γ) if Γ contains a
3-cycle, ν(Γ) = e(Γ) otherwise.

Proposition 5.7. Let G be a finite group. We may determine d(G) from the
knowledge of Λ∗(G).

Proof. By Proposition 5.1 we may assume d = d(G) ≥ 2. We consider all the stars
in Λ∗(G) sorted by the increasing number of leaves ui, for i ≥ 0: they corresponds
to the graph Γ∗

0,d(G)+i(G) for i ∈ N. If Γ is a connected component of Γ∗
a,b(G) and

a + b = d, then ν(Γ) ≤ u0. On the other hand if a + b > d, then, by Corollary
2.7, Γ = Γ∗

a,b(G) is connected and ν(Γ) = ua+b−d. Let Ω be the subfamily of Λ∗(G)

consisting of the graphs Γ with ν(Γ) = u1. Depending on the parity of d + 1 we
have the following two situations:

(1) Ω contains Γ∗
0,d+1(G)

∼= K0,u1
, other bipartite x = [d−1

2 ] graphs not iso-
morphic to the star K0,u1

and no graph containing a 3-cycle.

(2) Ω contains Γ∗
0,d+1(G)

∼= K0,u1
, other bipartite x = [d−1

2 ] graphs not iso-
morphic to the star K0,u1

and exactly one graph containing a 3-cycle.

In the former case d + 1 is odd and d = 2x. In the second case d + 1 is even and
d = 2x+ 1. �

The following definition is useful to deal with Question 1.

Definition 5.8. Let G 6= 1 be a finite group and let Γ ∈ Λ∗(G): we say that Γ has
level t if there exist a, b such that t = a + b and Γ is a connected component of
Γ∗
a,b(G).

The following lemma says that this is a good definition.

Lemma 5.9. Let G 6= 1 be a finite group. If Γ ∈ Λ∗(G), then the level of Γ is
uniquely determined.
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Proof. Put d = d(G) and assume that Γ∗
0,d+i(G) has ui leaves for i ≥ 0. Let

Γ ∈ Λ∗(G). If ν(Γ) ≤ u0, then Γ has level d. Otherwise ν(Γ) = ui for some positive
integer i and Γ has level d+ i. �

Lemma 5.10. Let G 6= 1 be a finite group. Let a + b > d(G) and let Va and Vb
be the two parts of the bipartite graph Γ∗

a,b(G) corresponding to elements of Ga and

Gb respectively. If a < b then |Va| < |Vb|.

Proof. For any x = (x1, . . . , xa) ∈ Va, there exists a generating (a + b)-tuple z =
(z1, . . . , za+b) for G such that xi = zi for 1 ≤ i ≤ a. We have y = (z1, . . . , zb) ∈ Vb,
since its entries generate G together with the a-tuple (zb+1, . . . , za+b). We define
an injective map φ : Va → Vb by setting φ(x) = y. Assume by contradiction that φ
is surjective: it can be easily seen that this implies that every x ∈ Va has degree 1
in Γ∗

a,b(G): by Lemma 2.4 this is possible only when G = 1. �

Now we can give the following answer to Question 1.

Proposition 5.11. Let G 6= 1 be a finite group. If Γ ∈ Λ∗(G) has level at least
d(G)+ 1, then there exists a uniquely determined pair a ≤ b such that Γ ∼= Γ∗

a,b(G).

Proof. Let d = d(G) and assume that Γ has level r = d + i with i ≥ 1. We
easily recognize the star Γ∗

0,r(G) and, if r is even, Γ∗
r/2,r/2(G), which is the unique

graph, at that level, containing a 3-cycle. Now we want to sort somehow all the
bipartite graphs Γ∗

a,b(G), with 1 ≤ a < r/2 and b = r − a. In this case Γ∗
a,b(G) is

a bipartite graph with the unique partition given by the two sets Va and Vb, and,
as we have seen in the previous lemma, |Va| < |Vb|. We claim that |Va| < |Va+1|
whenever 2a < r − 2. It is enough to construct φ : Va → Va+1 which is injective
but not surjective. For any x = (x1, . . . , xa) ∈ Va, there exists y = (y1, . . . , yb) ∈ Vb
such that G = 〈x1, . . . , xa, y1, . . . , yb〉. Therefore the (a+1)-tuple (x1, . . . , xa, y1) is
obviously an element of Va+1, since it generates G with the tuple (y2, . . . , yb). We
set φ(x) = (x1, . . . , xa, y1). The map φ defined in this way is clearly injective. As in
the proof of the previous lemma, it can be easily seen that φ is not surjective. �

The remaining part of this section is devoted to collect answers to Question 2.

Proposition 5.12. Let G be a finite group. We may determine |G| from the
knowledge of Λ∗(G).

Proof. By Proposition 5.7 we may determine d = d(G). Moreover by Lemma 5.9
and Proposition 5.11, we may identify the graph Γ = Γ∗

1,d(G), which is a bipartite
graph with a unique partition in two parts. The two parts are V1 and Vd. By
Lemma 5.10 |G| = |V1| < |Vd|. �

An immediate consequence of the results in this section is:

Theorem 5.13. Let G be a finite group. We may determine PG(s) from the
knowledge of Λ∗(G).

Corollary 5.14. Let G be a finite group. From the knowledge of Λ∗(G) we may
determine whether G is soluble, whether G is supersoluble and, for every prime
power n, the number of maximal subgroups of G of index n.

Proof. If we know Λ∗(G), then we know PG(s) and so we may deduce whether
G is soluble ([13, Theorem 5]), whether G is supersoluble ([13, Corollary 6]) and
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for every prime power n, the number of maximal subgroups of G of index n ([13,
Corollary 18]). �

Although several properties of G can be recognized by the knowledge of the
coefficients of the Dirichlet polynomial PG(s), this is not always the case. For
example we cannot deduce from PG(s) whetherG is nilpotent. Consider for example
G1 = C6 × C3 and G2 = Sym(3)× C3. It turns out that

PG1
(s) = PG2

(s) =

(

1−
1

2s

)(

1−
1

3s

)(

1−
3

3s

)

.

We want to show that nevertheless Λ∗(G) encodes enough information to decide
whether G is nilpotent. Before proving this result, we need an auxiliary lemma.

Lemma 5.15. Let α = (a1, . . . , ar), β = (b1, . . . , bs) be two sequences of prime
integers, with a1 ≤ · · · ≤ ar and b1 ≤ · · · ≤ bs. If

∏

i

(

1−
1

ai

)

=
∏

j

(

1−
1

bj

)

,

then α = β.

Proof. By induction on r + s. We have

(5.1)
∏

i

ai
∏

j

(bj − 1) =
∏

i

(ai − 1)
∏

j

bj.

Let p = max{a1, . . . , ar, b1, . . . , bs}, r
∗ = max{i | ai 6= p}, s∗ = max{j | bj 6= p}.

Since p does not divides ai− 1, bj − 1, divides ai if and only if i > r∗ and divides bj
if and only if j > s∗, we deduce that r − r∗ is the multiplicity of p in the left term
of (5.1) and s− s∗ is the multiplicity of p in the right term of (5.1). In particular
r − r∗ = s− s∗ and ar∗+1 = · · · = ar = bs∗+1 = · · · = bs = p. But then

∏

i≤r∗

(

1−
1

ai

)

=
∏

j≤s∗

(

1−
1

bj

)

,

and we conclude by induction. �

Theorem 5.16. Let G be a finite nilpotent group. If H is a finite group and
Λ∗(H) = Λ∗(G), then H is nilpotent.

Proof. Let G be a finite nilpotent group. For every p ∈ π(G) let dp = d(P ) where P
is a Sylow p-subgroup of G. For every nonnegative integer δ consider the Dirichlet
polynomials

Qp,δ(s) =
∏

0≤i≤δ−1

(

1−
pi

ps

)

, Q̃p,δ(s) =
∏

1≤i≤δ

(

1−
pi

ps

)

.

We have

PG(s) =
∏

p∈π(G)

Qp,dp
(s).

Since Λ∗(H) = Λ∗(G), it follows from Theorem 5.13 and Corollary 5.14 that PH(s) =
PG(s) and that H is a finite supersoluble group with d(H) = d(G) = d. By Lemma
5.9 and Proposition 5.11 in Λ∗(H) = Λ∗(G) we may uniquely identify the graph
∆ = Γ∗

1,d(G) = Γ∗
1,d(H): it is a bipartite graph whose partition has two parts V1
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and Vd such that |V1| = |G| = |H |.We are going to use the knowledge of the degrees
of the vertices of Vd to deduce that H must be nilpotent.

Since H is supersoluble, H = H/Frat(H) can be written in the form

H = H/Frat(H) ∼= (W r1
1 × · · · ×W rt

t )⋊ X,

where X is abelian, |Wi| = pi for a suitable prime pi and each Wi is non-central.
For every p ∈ π(X), let δp = d(Q), where Q is a Sylow p-subgroup of H. By [17,
Satz 2], we have

PH(s) =
∏

p∈π(X)

Qp,δp(s)
∏

1≤i≤t

Q̃pi,ri(s).

Let π = {p1, . . . , pt}. Since PG(s) = PH(s), by [13, Lemma 16] we deduce that the
primes p1, . . . , pt are pairwise distinct, dpi

= ri + 1 and δpi
= 1 for 1 ≤ i ≤ t.

Moreover dp = δp if p ∈ π(G) \ π.
If ω = (g1, . . . , gd) ∈ Gd corresponds to a non-isolated vertex of ∆, then the

degree of ω in ∆ is δω = |G|PG(S, 1), with S = 〈g1, . . . , gd〉 (here we denote by
PG(S, 1) the probability than a randomly chosen element of G generates G together
with S). Notice that PG(S, 1) = PG(S Frat(G), 1) = PG/S Frat(G)(1) so there exists
a subset πω of π(G) such that

(5.2) δω = |G|
∏

p∈πω

(

1−
1

p

)

= |V1|
∏

p∈πω

(

1−
1

p

)

.

In order to conclude that H is nilpotent, it suffices to prove that π = {p1, . . . , pt} =
∅. Assume, by contradiction, π 6= ∅, and let q = p1. We have X = Y × Q, where
Q, the Sylow q-subgroup of X, is cyclic. Let K be a subgroup of H such that

K = K/Frat(H) = (W r1−1
1 × · · · ×W rt

t )⋊ Y.

It can be easily seen that d(K) ≤ d(H) = d. So there exists (h1, . . . , hd) ∈ Hd such
that K = 〈h1, . . . , hd〉FratH. Let α = (h1, . . . , hd) : we have

δα = |H |PH(〈h1, . . . , hd〉, 1) = |V1|PH(K, 1) = |V1|

(

1−
1

p1

)2

.

We deduce from (5.2) that there exists π ⊆ π(G) such that

∏

p∈π

(

1−
1

p

)

=

(

1−
1

p1

)2

,

in contradiction with Lemma 5.15. �

Another piece of information that we cannot recover from the knowledge of |G|
and PG(s) is the order of Frat(G). For example consider

G1 = 〈x, y | x5 = 1, y4 = 1, xy = x2〉

and
G2 = 〈x, y | x5 = 1, y4 = 1, xy = x4〉.

We have |G1| = |G2| = 20 and

PG1
(s) = PG2

(s) =

(

1−
1

2s

)(

1−
5

5s

)

however Frat(G1) = 1 and Frat(G2) = 〈x2〉. This motivates the following proposi-
tion.
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Proposition 5.17. Let G be a finite group. We may determine |Frat(G)| from the
knowledge of Λ∗(G).

Proof. Since G is finite, there exists δ ∈ N, such that d(H) ≤ δ for every H ≤ G.
Let t ≥ δ and consider the graph Γ∗

1,t(G) (we may identify this graph by Lemma
5.9 and Proposition 5.11). In Vt there are some vertices (the ones corresponding to
the generating t-uples of G) that are adjacent to all the vertices in V1. We remove
these vertices and the edges starting from them. We obtain a new bipartite graph
in which some vertices of V1 are isolated: let Ωt be the set of these vertices. Notice
that (g) ∈ Ωt if and only 〈g, x1, . . . , xt〉 6= G whenever 〈x1, . . . , xt〉 6= G. Since
d(H) ≤ t for every H ≤ G, we deduce that (g) ∈ Ωt if and only 〈g,H〉 6= G
whenever H 6= G. In other words (g) ∈ Ωt if and only if g ∈ Frat(G). We conclude
that we may determine n = |Frat(G)| from the fact that |Ωt| = n if t is sufficiently
large. �

Corollary 5.18. Let G be a finite non-abelian simple group. If H is finite group
and Λ∗(H) = Λ∗(G), then H ∼= G.

Proof. By Theorem 5.13 PG(s) = PH(s), hence H/Frat(H) ∼= G by [32, Theorem
1]. Moreover, by the previous proposition, |Frat(H)| = |Frat(G)| = 1, hence
H ∼= G. �

Lemma 5.19. Assume that Λ∗(G) is known and let a, b be a pair of non-negative
integers. If either a + b > d(G) or a + b = d(G) and G is soluble, then we may
determine the graph Γa,b(G/Frat(G)).

Proof. Let f = |Frat(G)|. Under our assumptions we know that Γ∗
a,b(G) is con-

nected. First assume a 6= b : Γ∗
a,b(G) is a bipartite graph with |Va| + |Vb| vertices,

while Γa,b(G) has |G|
a+ |G|b vertices. In particular Γa,b(G) is uniquely determined

from Γ∗
a,b(G): it suffices to add |G|a − |Va| + |G|b − |Vb| isolated vertices. Simi-

larly, if a = b, then Γa,b(G) can be obtained from Γ∗
a,b(G) by adding |G|a − |V |

isolated vertices to the set V of the vertices of Γ∗
a,b(G). In both cases we note that

if 〈x1, . . . , xa, y1, . . . , yb〉 = G, then 〈x1α1, . . . , xaαa, y1β1, . . . , ybβb〉 = G for every
αi, βj ∈ Frat(G). We may consider the following equivalent relations in Γa,b(G) :
ω1 ∼1 ω2 if and only if ω1 and ω2 have the same neighbourhood in the graph;
ω1 = (x1, . . . , xγ) ∼2 (y1, . . . , yγ), with γ ∈ {a, b}, if and only if for any j there ex-
ists fj ∈ Frat(G) with yj = xjfj. For every vertex x = (x1, . . . , xγ) of Γa,b(G), the
equivalence class Ωx = [x]∼1

is the disjoint union of |Ωx|/f
γ ∼2-equivalence classes:

we obtain Γa,b(G/Frat(G)) from Γa,b(G), by deleting from every equivalence class
Ωx precisely |Ωx|(1− 1/fγ) vertices. �

By the previous results, at least in the case of finite soluble groups, the knowledge
of Λ∗(G) is equivalent to the knowledge of Λ∗(G/Frat(G)) and |FratG|.

From what we proved in this section, a question naturally arises:

Question 3. Assume that G is a (soluble) group with Frat(G) = 1. Is G uniquely
determined from Λ∗(G)?

The answer is negative. Indeed, consider the following example. Let C1 = 〈x1〉
and C2 = 〈x2〉 be two cyclic groups of order 5 and let V1 = 〈a1, b1〉, V2 = 〈a2, b2〉
be two vector space over the field with 11 elements. We define an action of C1
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on V1 in which x1 takes a1 to 3a1 and b1 to 4b1, and an action of C2 on V2 in
which x2 takes a2 to 3a2 and b2 to 5b2. The semidirect products G1 = V1 ⋊ C1

and G2 = V2 ⋊ C2 are both of order 605. It is easy to see that G1 6∼= G2, since
every element of C1 has determinant 1 while this is not true for C2. For j = 1, 2
let W1,j = 〈aj〉, W2,j = 〈bj〉 and let πi,j be the projection Gj → Gj/Wi,j . We now
construct a bijection τ : G1 → G2 in the following way:

• we set τ((αa1 + βb1)x
γ
1 ) = (αa2 + βb2)x

γ
2 if γ = 0, 1 mod 5;

• let g = (αa1+βb1)x
γ
1 with γ 6= 0 mod 5. There exist α∗, β∗ (depending on

α, β, γ) such that g = ((α∗a1 + β∗b1)x1)
γ . We set gτ = ((α∗a2 + β∗b2)x2)

γ .

For i ∈ {1, 2}, τ induces a bijection τi : G1/Wi,1 → G2/Wi,2. We have

(5.3) 〈gτπi,2〉 = 〈gπi,1〉τi .

We claim that 〈g1, . . . , gd〉 = G1 if and only if 〈gτ1 , . . . , g
τ
d〉 = G2. Clearly this

claim implies that τ induces a graph isomorphism between Γa,b(G1) and Γa,b(G2) for
every pair a, b of non-negative integers. To prove the claim notice that 〈y1, . . . , yd〉 =
Gj if and only if 〈y

πi,j

1 , . . . , y
πi,j

d 〉 = Gj/Wi,j for i ∈ {1, 2} and that 〈y
πi,j

1 , . . . , y
πi,j

d 〉 =
Gj/Wi,j if and only if there exist k1, k2 with 〈y

πi,j

k1
〉 6= 〈y

πi,j

k2
〉. So assume 〈g1, . . . , gd〉 =

G1 and fix i ∈ {1, 2}. There exist k1, k2 with 〈g
πi,1

k1
〉 6= 〈g

πi,1

k2
〉. It follows from (5.3),

that

〈g
τπi,2

k1
〉 = 〈g

πi,1

k1
〉τi 6= 〈g

πi,1

k2
〉τi = 〈g

τπi,2

k2
〉,

and so we conclude 〈gτ1 , . . . , g
τ
d〉 = G2.

We conclude by observing that most of the arguments in this section use only part
of the information given by the family Λ∗(G). In particular it seems a natural ques-
tion to ask whether a smaller family of graphs can efficiently encode the generating
property of G. In some crucial steps of the proofs of our results (for example in the
proof of Theorem 5.16 and Proposition 5.17) a decisive role is played by the graphs
Γ∗
1,t(G). So a good candidate to consider seems to be the family Λ1

∗(G) of the con-
nected components of the graphs Γ∗

1,t(G) for t ∈ N. We assume Λ1
∗(G) = {∆k}k∈N,

where the graphs are enumerated in such a way that ν(∆k) ≤ ν(∆k+1) for every
k ∈ N.

Theorem 5.20. Assume that the family Λ1
∗(G) is known. We may determine |G|,

d(G), PG(s) and |Frat(G)|. Moreover we may recognize whether or not G is soluble,
supersoluble, nilpotent.

Proof. If G is cyclic, then ∆0 = Γ∗
1,0(G) is a non-trivial connected graph containing

a vertex of degree 1, while, by Lemma 2.4, if G is not cyclic none of the graphs
{∆k}k∈N can contain a vertex of degree 1. So we may recognize from Λ1

∗(G) whether
G is cyclic. Therefore, from now on we will assume that G is not cyclic.

Let d = d(G). There exists τ ∈ N such that ∆0, . . . ,∆τ are the connected
components of Γ∗

1,d−1(G). By Corollary 2.7, for k > τ we have ∆k = Γ∗
1,d+k−τ−1(G).

We need to recognize τ. Notice that if k > τ, then ∆k is a bipartite graph with one
of the two parts consisting precisely of |G| vertices and the second part containing
a subset of φG(d+ k− τ − 1) vertices connected to all the vertices of the first part.
We claim that ∆k does not behave in this way whenever k ≤ τ. If d = 2, then none
of the connected components of Γ1,1(G) is bipartite. So we may assume d 6= 2.
Assume by contradiction that there exists a connected component of Γ∗

1,d−1(G),

say ∆, which is a bipartite graph with two parts A and B such that |A| = G and at
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least one vertex in B is connected to all the vertices in A. Since (1) is an isolated
vertex of Γ1,d−1(G), it must be A ⊆ Gd−1 and B ⊆ G. Let (x) ∈ B be a vertex
connected to all the vertices of A. Fix (g1, . . . , gd−1) ∈ A. Since

〈x, g1, . . . , gd−1〉=〈x, g1x, g2, . . . , gd−1〉=〈g1, g1x, g2, . . . , gd−1〉=〈g1, x, g2, . . . , gd−1〉

we have (x, g2, . . . , gd−1) ∈ A, hence (x) and (x, g2, . . . , gd−1) are adjacent, but this
would imply G = 〈x, g2, . . . , gd−1〉, hence d(G) ≤ d− 1, a contradiction.

Once τ has been determined, we have that |G| is the cardinality of the smaller
part in the bipartite graph ∆k, for any choice of k > τ. Alternatively, we may notice
that

lim
k→∞

ν(∆k+1)

ν(∆k)
= lim

k→∞

φG(d+ k − τ + 1)

φG(d+ k − τ)
= |G|.

We can also determine d(G), since ν(∆k) = φG(d+ k − τ) ∼ |G|d+k−τ if k is large
enough and so

d = lim
k→∞

log|G|(ν(∆k))− k + τ.

But now we know PG(k) for every positive integer k 6= d(G) and this is enough to
determine the Dirichlet polynomial PG(s). In particular we may recognize whether
G is soluble, supersoluble, nilpotent (for this we repeat the argument in Theorem
5.16). Moreover we may determine |Frat(G)| (same proof as Proposition 5.17). �

6. Generalizing some definitions and results from [7]

The following equivalence relation ≡m was introduced in [7, Section 2]: two
elements are equivalent if each can be substituted for the other in any generating
set for G. By [7, Proposition 2.2], x ≡m y if and only if x and y lie in exactly the

same maximal subgroups of G. We then refine this to a sequence ≡
(r)
m of equivalence

relations by saying that, for any positive integer r, x ≡
(r)
m y if and only if

(∀z1, . . . , zr−1 ∈ G) ((〈x, z1, . . . , zr−1〉 = G) ⇔ (〈y, z1, . . . , zr−1〉 = G)).

Notice that x ≡
(r)
m y if and only if (x) and (y) have the same neighbours in the

graph Γ1,r−1(G): in particular Γ1,r−1(G) determines the number of classes for the

equivalence relation ≡
(r)
m and the sizes of these classes. The relations ≡

(r)
m become

finer as r increases. We define a group invariant ψ(G) to be the value of r at which

the relations ≡
(r)
m stabilise to ≡m. If G is soluble then ψ(G) ∈ {d(G), d(G) + 1}

(see [7, Corollary 2.12]). Furthermore, in general d(G) ≤ ψ(G) ≤ d(G) + 5 (see
[7, Corollary 2.13]), however no example is known of a finite group G for which
ψ(G) > d(G)+1. For r ≥ ψ(G), we have that (x) and (y) have the same neighbours
in the graph Γ1,r−1(G) if and only if x ≡m y. In particular from the knowledge of
the family of graphs {Γ1,r−1(G)}r∈N we may determine the precise value of ψ(G).

Given a subset X of a finite group G, we will denote by dX(G) the smallest
cardinality of a set of elements of G generating G together with the elements of X.
In [7, Definition 2.15] the following notion is also introduced: a finite group G is
efficiently generated if for all x ∈ G, d{x}(G) = d(G) implies that x ∈ Frat(G).

Proposition 6.1. Assume that the family Λ1
∗(G) = {Γ∗

1,r−1(G)}r∈N is known. We
may deduce whether G is or not efficiently generated.
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Proof. First, by Theorem 5.20, we may determine d(G), |G| and |Frat(G)|. More-
over, inside the family Λ1

∗(G), we may identify the connected components of
Γ∗
1,d(G)−1(G) and consequently we may count how many of the vertices of

Γ1,d(G)−1(G) corresponding to 1-tuples are isolated. Let ω be the number of these
vertices: G is efficiently generated if and only |Frat(G)| = ω. �

Corollary 6.2. Assume that the family Λ1
∗(G) is known. If G is soluble, then we

may determine ψ(G).

Proof. Assume that G is a finite soluble group. By [7, Corollary 2.20], ψ(G) = d(G)
if G is efficiently generated, ψ(G) = d(G) + 1 otherwise, so the conclusion follows
immediately from the previous proposition. �

Generalizing a definition given in [7] for 2-generator groups, we say that a finite
G has non-zero spread if (g) is not isolated in the graph Γ1,d(G)−1(G) for every
g 6= 1. Moreover we define an equivalence relation ≡Γ on the elements of G by the
rule x ≡Γ y if (x) and (y) have the same set of neighbours in the graph Γ1,d(G)−1(G).
The following statements generalize [7, Proposition 4.5] and [7, Theorem 4.6] and
can be easily proved.

Proposition 6.3. Let G be a finite group. Then the relations ≡Γ and ≡
(d)
m on

G coincide; hence ≡m is a refinement of ≡Γ, and is equal to ≡Γ if and only if
ψ(G) ≤ d.

Theorem 6.4. Let G be a finite group with d(G) = d.

(1) G has non-zero spread if and only if G is efficiently generated and has trivial
Frattini subgroup.

(2) If G is soluble and has non-zero spread, then ψ(G) = d.

Assume that G is a finite group with non-zero spread and let d = d(G). If N is
a non-trivial normal subgroup of G, then d(G/N) < d (otherwise we would have
d{y}(G) = d for every y ∈ N). So G has the following property:

(⋆) every proper quotient can be generated by d− 1 elements, but G cannot.

When d(G) = 2, groups with non-zero spread are also called 3
2 -generated. In

[3], Breuer, Guralnick and Kantor make the following remarkable conjecture: a
finite group is 3

2 -generated if and only if every proper quotient is cyclic. In our
terminology we could propose the following more general conjecture:

Conjecture 1. A finite group G has non-zero spread if and only if G satisfies the
property (⋆).

The groups with this property (∗) have been studied in [12]. By [12, Theorem
1.4 and Theorem 2.7], there exists a monolithic primitive group L and a positive
integer t such that G ∼= Lt and d(Lt−1) < d(Lt) (setting L0 = L/ soc(L)). This
motivates the following question:

Question 4. Let L be a finite monolithic primitive group and t ∈ N. Assume that
G ∼= Lt and d(Lt−1) < d(Lt). Does G have non-zero spread?

The remain part of this section will give an affirmative answer to the previous
question.
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First assume that N = socL is nonabelian. If t = 1 then by [29, Theorem 1.1]
d = d(G) = d(L) = max(d(L/N), 2) ≤ max(d − 1, 2), hence d = 2 and Question 4
has an affirmative answer by Theorem 1 in [19]. Suppose t 6= 1 (and consequently
d 6= 2) and let x = (l, ln2, . . . , lnt), with l ∈ L, ni ∈ N , be a non-identity ele-
ment of G = Lt. Since d(Lt−1) < d, there exist y1 = (l1, l1m1,2, . . . , l1m1,t−1), . . . ,
yd−1 = (ld−1, ld−1md−1,2, . . . , ld−1md−1,t−1) such that Lt−1 = 〈y1, . . . , yd−1〉. This
is equivalent to saying that the rows of the matrix

A :=








l1 l2 . . . ld−1

l1m1,2 l2m2,2 . . . ld−1md−1,2

...
... · · ·

...
l1m1,t−1 l2m2,t−1 . . . ld−1md−1,t−1








are generating (d − 1)-tuples of L which belong to distinct orbits with respect
to the conjugacy action of C = CAutL(L/N). Since x is a non-identity element
of G, there exist i ∈ {2, . . . , t} and n in N such that ln 6= lni. Up to re-
ordering, we may assume i = t. Let ỹ1 = (l1, l1m1,2, . . . , l1m1,t−1, l

n
1 ), . . . , ỹd−1 =

(ld−1, ld−1md−1,2, . . . , ld−1md−1,t−1, l
n
d−1). We claim that Lt = 〈ỹ1, . . . , ỹd−1, x〉.

This is equivalent to say that the rows of the matrix

Ã :=










l1 l2 . . . ld−1 l
l1m1,2 l2m2,2 . . . ld−1md−1,2 ln2

...
... · · ·

...
...

l1m1,t−1 l2m2,t−1 . . . ld−1md−1,t−1 lnt−1

ln1 ln2 . . . lnd−1 lnt










are generating d-tuples of L which belong to distinct orbits with respect to the
conjugacy action of C = CAutL(L/N). The way in which A has been constructed

ensures that the first t−1 rows of Ã satisfy the requested properties. We have only
to prove that the last row cannot be C-conjugate to one of the first t−1 rows. Sup-
pose i ∈ {2, . . . , t − 1} : since (l1, l2, . . . , ld−1) and (l1m1,i, l2m2,i, . . . , ld−1md−1,i)
are not C-conjugate and n ∈ C we deduce that also (ln1 , l

n
2 , . . . , l

n
d−1, lnt) and

(l1m1,i, l2m2,i, . . . , ld−1md−1,i, lni) are not C-conjugate. Finally assume by con-
tradiction that there exists γ ∈ C with (ln1 , . . . , l

n
d−1, lnt) = (l1, . . . , ld−1, l)

γ . Since
〈l1, . . . , ld−1〉 = L, we have CC(l1, . . . , ld−1) = 1, hence n = γ and consequently
lnt = ln, a contradiction. So we have proved that Question 4 has an affirmative
answer when soc(L) is nonabelian.

Now assume that N = socL is abelian. We have L = N ⋊ H, where H is
an irreducible subgroup of Aut(N) and d(H) = d(L/N) ≤ d − 1. As usual, let
F = EndH N, q = |F |, n = dimF (N), m = dimF (Der(H,N)). Let δ1, . . . , δm be
a basis of Der(H,N) as an F -vector space. For each h ∈ H consider the matrix
Ah ∈Mm×n(F ) defined by setting

Ah :=






δ1(h)
...

δm(h)




 .

The following is an immediate consequence of [26, Proposition 5].
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Lemma 6.5. Suppose that H = 〈h1, . . . , hk〉 and let u be a positive integer. Let
wi = (wi,1, . . . , wi,u) ∈ N t with 1 ≤ i ≤ k and let

Bi =






wi,1

...
wi,u




 ∈Mt×n(F ).

The following are equivalent.

(1) Lt = N t
⋊H = 〈h1w1, . . . , hkwk〉;

(2) rank

(
Ah1

· · · Ahk

B1 · · · Bk

)

= m+ t.

In particular d(Lt) ≤ k if and only if m+ t ≤ kn.

In our case d(G) = d(Lt) = d but d(Lt−1) ≤ d − 1, since Lt−1 is a proper
epimorphic image of Lt : by the previous Lemma we must have m+ t−1 = (d−1)n
i.e.,

t = (d− 1)n−m+ 1.

Now assume that x := h(v1, . . . , vt) is a non-identity element of Lt. Fix h1, . . . , hd−1

such that H = 〈h1, . . . , hd−1〉. There exist w̃i ∈ N t−1, for 1 ≤ i ≤ d − 1, such that
Lt−1 = 〈h1w̃1, . . . , hd−1w̃d−1〉, in other words

(6.1) det

(
Ah1

. . . Ahd−1

B̃1 . . . B̃d−1

)

6= 0.

We claim that there exist u1, . . . , ud−1 ∈ N such that

(6.2) Lt = 〈h(v1, . . . , vt), h1(w̃1, u1), . . . , hd−1(w̃d−1, ud−1)〉.

Set

B̃ =






v1
...

vt−1




 .

By Lemma 6.5, (6.2) is equivalent to

(6.3) rank





Ah Ah1
· · · Ahd−1

B̃ B̃1 · · · B̃d−1

vt u1 · · · ud−1



 = (d− 1)n+ 1 = m+ t.

Since x 6= 1, we have

X :=





Ah

B̃
vt



 6= 0.

In particular at least one column of X is a non-zero element of Mm+t,1(F ). Let us
write such a column in the form

Y =

(
C
γ

)

with C ∈Mm+t−1,1(F ) and γ ∈ F. Let

Z :=

(
Ah1

. . . Ahd−1

B̃1 . . . B̃d−1

)

.
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By (6.1), C is a linear combination of the columns of Z. If γ 6= 0, then

det

(
C Z
γ 0

)

6= 0,

so we are done if we choose u1 = · · · = ud−1 = 0. If γ = 0, then C is a non-
zero matrix, so, denoting by Zi the i-th column of Z, there exists (0, . . . , 0) 6=
(λ1, . . . , λ(d−1)n) ∈ F (d−1)n such that

∑

i λiZi = C. Choose (α1, . . . , α(d−1)n) ∈

F (d−1)n such that
∑

i λiαi 6= 0. If we choose

u1 = (α1, . . . , αn), u2 = (αn+1, . . . , α2n), . . . , ud−1 = (α(d−2)n+1, . . . , α(d−1)n),

then

det

(
C Z
0 u1 . . . ud−1

)

6= 0

Summarizing we proved:

Proposition 6.6. The answer to Question 4 is affirmative. As a consequence
Conjecture 1 is true.
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