The statistical tendency of a GDI spark-ignition engine to undergo knocking combustion as a consequence of spark timing variation is numerically investigated. In particular, attention is focused on the importance to match combustion-relevant and knock-relevant fuel properties to ensure consistency with the experimental evidence. An inhouse surrogate formulation methodology is used to emulate real gasoline properties, comparing fuel models of increasing complexity. Knock is investigated using a proprietary statistical knock model (GruMo Knock Model, GK-PDF). The model can infer a log-normal distribution of knock intensity within a RANS formalism, by means of transport equations for variances and turbulence-derived probability density functions (PDFs) for physical quantities. The calculated distributions are compared to measured statistical distributions. The proposed numerical/experimental comparison constitutes an advancement in synthetic chemistry integration into 3D-CFD combustion simulations.
Comparison between Experimental and Simulated Knock Statistics Using an Advanced Fuel Surrogate Model / Cicci, F.; Pessina, V.; Iacovano, C.; Sparacino, S.; Barbato, A.. - In: E3S WEB OF CONFERENCES. - ISSN 2267-1242. - 197:(2020), p. 06012. (Intervento presentato al convegno 75th National ATI Congress - #7 Clean Energy for all, ATI 2020 tenutosi a ita nel 2020) [10.1051/e3sconf/202019706012].
Comparison between Experimental and Simulated Knock Statistics Using an Advanced Fuel Surrogate Model
Cicci F.;Pessina V.;Iacovano C.;Sparacino S.;Barbato A.
2020
Abstract
The statistical tendency of a GDI spark-ignition engine to undergo knocking combustion as a consequence of spark timing variation is numerically investigated. In particular, attention is focused on the importance to match combustion-relevant and knock-relevant fuel properties to ensure consistency with the experimental evidence. An inhouse surrogate formulation methodology is used to emulate real gasoline properties, comparing fuel models of increasing complexity. Knock is investigated using a proprietary statistical knock model (GruMo Knock Model, GK-PDF). The model can infer a log-normal distribution of knock intensity within a RANS formalism, by means of transport equations for variances and turbulence-derived probability density functions (PDFs) for physical quantities. The calculated distributions are compared to measured statistical distributions. The proposed numerical/experimental comparison constitutes an advancement in synthetic chemistry integration into 3D-CFD combustion simulations.File | Dimensione | Formato | |
---|---|---|---|
Comparison_Between_Experimental_and_Simulated_Knoc.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.92 MB
Formato
Adobe PDF
|
1.92 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris