Several Application Programming Interfaces (APIs) and frameworks have been proposed to simplify the development of General-Purpose GPU (GPGPU) applications. GPGPU application development typically involves specific customization for the target operating systems and hardware devices. The effort to port applications from one API to the other (or to develop multi-target applications) is complicated by the availability of a plethora of specifications, which in essence offers very similar underlying functionality. In this work we provide an in-depth study of six state-of-the-art GPGPU APIs. From these we derive a taxonomy of the common semantics and propose a unified specification. We describe a methodology to translate this unified specification into different target APIs. This simplifies cross-platform application development and provides a clean framework for benchmarking. Our proposed unified specification is called GUST (GPGPU Unified Specification and Translation) and it captures common functionality found in compute-only APIs (e.g., CUDA and OpenCL), in the compute pipeline of traditional graphic-oriented APIs (e.g., OpenGL and Direct3D11) and in last-generation bare-metal APIs (e.g., Vulkan and Direct3D12). The proposed translation methodology solves differences between specific APIs in a transparent manner, without hiding available tuning knobs for compute kernel optimizations and fostering best programming practices in a simple manner.
A Taxonomy of Modern GPGPU Programming Methods: On the Benefits of a Unified Specification / Capodieci, N.; Cavicchioli, R.; Marongiu, A.. - In: IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. - ISSN 0278-0070. - 41:6(2021), pp. 1679-N/A. [10.1109/TCAD.2021.3082863]
A Taxonomy of Modern GPGPU Programming Methods: On the Benefits of a Unified Specification
Capodieci N.;Cavicchioli R.;Marongiu A.
2021
Abstract
Several Application Programming Interfaces (APIs) and frameworks have been proposed to simplify the development of General-Purpose GPU (GPGPU) applications. GPGPU application development typically involves specific customization for the target operating systems and hardware devices. The effort to port applications from one API to the other (or to develop multi-target applications) is complicated by the availability of a plethora of specifications, which in essence offers very similar underlying functionality. In this work we provide an in-depth study of six state-of-the-art GPGPU APIs. From these we derive a taxonomy of the common semantics and propose a unified specification. We describe a methodology to translate this unified specification into different target APIs. This simplifies cross-platform application development and provides a clean framework for benchmarking. Our proposed unified specification is called GUST (GPGPU Unified Specification and Translation) and it captures common functionality found in compute-only APIs (e.g., CUDA and OpenCL), in the compute pipeline of traditional graphic-oriented APIs (e.g., OpenGL and Direct3D11) and in last-generation bare-metal APIs (e.g., Vulkan and Direct3D12). The proposed translation methodology solves differences between specific APIs in a transparent manner, without hiding available tuning knobs for compute kernel optimizations and fostering best programming practices in a simple manner.File | Dimensione | Formato | |
---|---|---|---|
GUST_TCAD21.pdf
Open access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
712.84 kB
Formato
Adobe PDF
|
712.84 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris