In this paper an application of a procedure using a neural network for the detection and isolation of faults modeled by step functions in input-output control sensors of a single shaft industrial gas turbine is presented. The real process is modeled as a linear dynamic system corrupted by stochastic additive noise. The diagnosis system involves dynamic observers and utilizes the neural network in order to classify observer residuals into fault classes.

Application of a neural network in gas turbine control sensor fault detection / Simani, S.; Fantuzzi, C.; Spina, P. R.. - 1:(1998), pp. 182-186. (Intervento presentato al convegno Proceedings of the 1998 IEEE International Conference on Control Applocations. Part 1 (of 2) tenutosi a Trieste, Italy, nel 1998).

Application of a neural network in gas turbine control sensor fault detection

Simani S.;Fantuzzi C.;Spina P. R.
1998

Abstract

In this paper an application of a procedure using a neural network for the detection and isolation of faults modeled by step functions in input-output control sensors of a single shaft industrial gas turbine is presented. The real process is modeled as a linear dynamic system corrupted by stochastic additive noise. The diagnosis system involves dynamic observers and utilizes the neural network in order to classify observer residuals into fault classes.
1998
Proceedings of the 1998 IEEE International Conference on Control Applocations. Part 1 (of 2)
Trieste, Italy,
1998
1
182
186
Simani, S.; Fantuzzi, C.; Spina, P. R.
Application of a neural network in gas turbine control sensor fault detection / Simani, S.; Fantuzzi, C.; Spina, P. R.. - 1:(1998), pp. 182-186. (Intervento presentato al convegno Proceedings of the 1998 IEEE International Conference on Control Applocations. Part 1 (of 2) tenutosi a Trieste, Italy, nel 1998).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1249200
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 0
social impact