In this paper an integrated experimental and numerical approach is applied to optimize a new 2.5l, four valve, turbocharged DI Diesel engine, developed by VM Motori. The study is focused on the EGR system. For this engine, the traditional dynamometer bench tests provided 3-D maps for brake specific fuel consumption and emissions as a function of engine speed and brake mean effective pressure. Particularly, a set of operating conditions has been considered which, according to the present European legislation, are fundamental for emissions. For these conditions, the influence of the amount of EGR has been experimentally evaluated. A computational model for the engine cycle simulation at full load has been built by using the WAVE code. The model has been set up against experiments, since an excellent agreement has been reached for all the relevant thermo-fluid-dynamic parameters. The simulation model has been used to gain a better insight on the EGR system operations. Furthermore, the influence of the most important geometric parameters (EGR valve seat diameter, intake manifold throttle diameter) on the amount of recycled gas for a few critical operating conditions has been investigated. Copyright © 2000 Society of Automotive Engineers, Inc.

Experimental and numerical investigation on the EGR system of a new automotive diesel engine / Mattarelli, E.; Bianchi, G. M.; Ivaldi, D.. - In: SAE TECHNICAL PAPER. - ISSN 0148-7191. - 1:(2000). (Intervento presentato al convegno SAE 2000 World Congress tenutosi a Detroit, MI, usa nel 2000) [10.4271/2000-01-0224].

Experimental and numerical investigation on the EGR system of a new automotive diesel engine

Mattarelli E.;Bianchi G. M.;
2000

Abstract

In this paper an integrated experimental and numerical approach is applied to optimize a new 2.5l, four valve, turbocharged DI Diesel engine, developed by VM Motori. The study is focused on the EGR system. For this engine, the traditional dynamometer bench tests provided 3-D maps for brake specific fuel consumption and emissions as a function of engine speed and brake mean effective pressure. Particularly, a set of operating conditions has been considered which, according to the present European legislation, are fundamental for emissions. For these conditions, the influence of the amount of EGR has been experimentally evaluated. A computational model for the engine cycle simulation at full load has been built by using the WAVE code. The model has been set up against experiments, since an excellent agreement has been reached for all the relevant thermo-fluid-dynamic parameters. The simulation model has been used to gain a better insight on the EGR system operations. Furthermore, the influence of the most important geometric parameters (EGR valve seat diameter, intake manifold throttle diameter) on the amount of recycled gas for a few critical operating conditions has been investigated. Copyright © 2000 Society of Automotive Engineers, Inc.
2000
SAE 2000 World Congress
Detroit, MI, usa
2000
1
Mattarelli, E.; Bianchi, G. M.; Ivaldi, D.
Experimental and numerical investigation on the EGR system of a new automotive diesel engine / Mattarelli, E.; Bianchi, G. M.; Ivaldi, D.. - In: SAE TECHNICAL PAPER. - ISSN 0148-7191. - 1:(2000). (Intervento presentato al convegno SAE 2000 World Congress tenutosi a Detroit, MI, usa nel 2000) [10.4271/2000-01-0224].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1248890
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact