Subwavelength nanostructured surfaces are realized with self-assembled vertically-aligned InAs nanowires, and their functionalities as optical reflectors are investigated. In our system, polarization-resolved specular reflectance displays strong modulations as a function of incident photon energy and angle. An effective-medium model allows one to rationalize the experimental findings in the long wavelength regime, whereas numerical simulations fully reproduce the experimental outcomes in the entire frequency range. The impact of the refractive index of the medium surrounding the nanostructure assembly on the reflectance was estimated. In view of the present results, sensing schemes compatible with microfluidic technologies and routes to innovative nanowire-based optical elements are discussed.
Self-Assembled InAs Nanowires as Optical Reflectors / Floris, Francesco; Fornasari, Lucia; Marini, Andrea; Bellani, Vittorio; Banfi, Francesco; Roddaro, Stefano; Ercolani, Daniele; Rocci, Mirko; Beltram, Fabio; Cecchini, Marco; Sorba, Lucia; Rossella, Francesco. - In: NANOMATERIALS. - ISSN 2079-4991. - 7:11(2017), pp. 400-N/A. [10.3390/nano7110400]
Self-Assembled InAs Nanowires as Optical Reflectors
Ercolani, Daniele;Sorba, Lucia;Rossella, Francesco
2017
Abstract
Subwavelength nanostructured surfaces are realized with self-assembled vertically-aligned InAs nanowires, and their functionalities as optical reflectors are investigated. In our system, polarization-resolved specular reflectance displays strong modulations as a function of incident photon energy and angle. An effective-medium model allows one to rationalize the experimental findings in the long wavelength regime, whereas numerical simulations fully reproduce the experimental outcomes in the entire frequency range. The impact of the refractive index of the medium surrounding the nanostructure assembly on the reflectance was estimated. In view of the present results, sensing schemes compatible with microfluidic technologies and routes to innovative nanowire-based optical elements are discussed.File | Dimensione | Formato | |
---|---|---|---|
nanomaterials-07-00400.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
4.66 MB
Formato
Adobe PDF
|
4.66 MB | Adobe PDF | Visualizza/Apri |
nanomaterials-07-00400-s001.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris