In this note we give a proof of the Sobolev and Morrey embedding theorems based on the representation of functions in terms of the fundamental solution of suitable partial differential operators. We also prove the compactness of the Sobolev embedding. We first describe this method in the classical setting, where the fundamental solution of the Laplace equation is used, to recover the classical Sobolev and Morrey theorems. We next consider degenerate Kolmogorov equations. In this case, the fundamental solution is invariant with respect to a non-Euclidean translation group and the usual convolution is replaced by an operation that is defined in accordance with this geometry. We recover some known embedding results and we prove the compactness of the Sobolev embedding. We finally apply our regularity results to a kinetic equation.

A Compactness Result for the Sobolev Embedding via Potential Theory / Camellini, Filippo; Eleuteri, Michela; Polidoro, Sergio. - 46:(2021), pp. 61-91. [10.1007/978-3-030-73778-8_4]

A Compactness Result for the Sobolev Embedding via Potential Theory

Eleuteri, Michela
Membro del Collaboration Group
;
Polidoro, Sergio
Membro del Collaboration Group
2021

Abstract

In this note we give a proof of the Sobolev and Morrey embedding theorems based on the representation of functions in terms of the fundamental solution of suitable partial differential operators. We also prove the compactness of the Sobolev embedding. We first describe this method in the classical setting, where the fundamental solution of the Laplace equation is used, to recover the classical Sobolev and Morrey theorems. We next consider degenerate Kolmogorov equations. In this case, the fundamental solution is invariant with respect to a non-Euclidean translation group and the usual convolution is replaced by an operation that is defined in accordance with this geometry. We recover some known embedding results and we prove the compactness of the Sobolev embedding. We finally apply our regularity results to a kinetic equation.
2021
23-mar-2021
Harnack Inequalities and Nonlinear Operators.
Vespri V., Gianazza U., Monticelli D.D., Punzo F., Andreucci D.
978-3-030-73777-1
978-3-030-73778-8
Springer, Cham
A Compactness Result for the Sobolev Embedding via Potential Theory / Camellini, Filippo; Eleuteri, Michela; Polidoro, Sergio. - 46:(2021), pp. 61-91. [10.1007/978-3-030-73778-8_4]
Camellini, Filippo; Eleuteri, Michela; Polidoro, Sergio
File in questo prodotto:
File Dimensione Formato  
CEP.pdf

Open access

Descrizione: Articolo
Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 167.55 kB
Formato Adobe PDF
167.55 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1245977
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact