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A compactness result for the Sobolev embedding
via potential theory *
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April 16, 2018

Devoted to Emmanuele Di Benedetto in occasion of his 70th birthday

Abstract

In this note we give a proof of the Sobolev and Morrey embedding theorems based on
the representation of functions in terms of the fundamental solution of suitable partial
differential operators. We also prove the compactness of the Sobolev embedding. We
first describe this method in the classical setting, where the fundamental solution of the
Laplace equation is used, to recover the classical Sobolev and Morrey theorems. We
next consider degenerate Kolmogorov equations. In this case, the fundamental solution
is invariant with respect to a non-Euclidean translation group and the usual convolution
is replaced by an operation that is defined in accordance with this geometry. We recover
some known embedding results and we prove the compactness of the Sobolev embedding.
We finally apply our regularity results to a kinetic equation.

Keywords: Sobolev spaces, Sobolev embedding, Morrey embedding, Compactness, Funda-
mental solution, Kolmogorov equation.

1 Introduction

Sobolev and Morrey embedding theorems are fundamental tools in the regularity theory for
Elliptic and Parabolic second order Partial Differential Equations (PDFEs in the sequel). In
particular, they play a crucial role in the natural setting for the study of uniformly elliptic
PDEs in divergence form, that is the Sobolev space WP,

There are several proofs of the Sobolev and Morrey embedding theorems, all of them rely
on some integral representation of a general function v € WP in terms of its gradient. Here
we focus in particular on representation formulas based on the fundamental solution of the
Laplace equation.
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Consider a function v € Cg°(R"™). By the very definition of fundamental solution I', the
following identity holds

u(z) = —/ Iz —y)Au(y) dy, for every x € R", (1.1)

and an integration by parts immediately gives
u(z) = / (VyI'(x —y), Vu(y)) dy, for every x € R", (1.2)

where (-,-) and V denote the usual inner product in R™ and the gradient, respectively. We
recall that the gradient of the fundamental solution of the Laplace equation writes as follows

1

V) = e

(ZC - y)7 x 7& Y, (13)
where w, is the measure of the n-dimensional unit ball. In particular, VI' is an homogeneous
function of degree —n + 1, and there exists a positive constant ¢, such that

VI (z = y)| < enlw =y, (1.4)

thus (1.2) yields the following inequality:

@) < e [ o=yl Vutyldy (15)

The Young inequality for convolution with homogeneous kernels (see, for instance, Theorem
1, p. 119 in [16]) then gives

IVT & V] o gy < Cp [Vl poany,  L<p<n, (L6)

where p* = % is the Sobolev conjugate of p, and C), is a positive constant which only

depends on p and on the dimension n. Here and in the sequel the dependence on n will be
often omitted. As a consequence we find

[ull o (mny < Cp [Vl Logny, for every u € Ci°(R"), 1<p<n. (1.7)

From the above inequality we plainly obtain the following Sobolev inequality for any open
set Q C R"™
17
ullza() < Cpg llullwre),  for every u € Wy (Q), (1.8)

with 1 <p <n and p < q < p*. Here ), is a positive constant which only depends on p, q
and n. By a standard argument (1.6) also gives the Sobolev embedding theorem for WP (Q)
provided that the boundary of Q is sufficiently smooth.

The Morrey inequality (see Theorem 2.4 below) can be obtained by the representation
formula (1.2), by using the following fact: there exists a positive constant M,,, only depending
on n, such that with

|z — y|

™

102, T(2) — 04, T ()| < M, forj=1,...,m, (L9)



for every z,y € R™\ {0} such that |z — y| < |z|/2. Indeed, a rather simple argument based
on (1.9) provides us with the following bound: if u € Wol’p(Q), with p > n, then

lu(z) —u(y)] < 5p |Vull o oylz — y\l_%, for every x,y € Q, (1.10)

for some positive constant @, only depending on p and n.

It is worth noting that the inequality (1.9) can be also used to prove the compactness of
the Sobolev embedding (1.8) for p < ¢ < p*, if Q is a bounded open set. As we will see in
the sequel, the following estimates holds for p < ¢ < p*: there exists a positive constant C,,,
such that

~ n(ioL
[u(h+ ) = ullLa@) < CpglIVullLr) [R| (-5 )7 (1.11)

for every u € C3°(€2) and for every h € R" sufficiently small. Note that the exponent in the
right hand side of (1.11) belongs to the interval ]0, 1[ if, and only if, p < ¢ < p*, then in this
case we have

|lu(h +-) —ullfag) = 0 as |h| — 0.

This inequality provides us with the integral uniform continuity, which is needed for the
1 1

compactness in the L? spaces. We also observe that n<f — —*> — 1 as ¢ — p. We then

retrieve a known result contained for instance in [16], Chapter V, Section 3.5.

The advantage of the method described above, with respect to other ones, is in that it
only requires the existence of a fundamental solution and its homogeneity properties. In
particular, it applies to the function spaces introduced by Folland [8] for the study second
order linear differential operators that satisfy the Hérmander’s condition (see [10]). It should
be noticed that this approach has also a drawback, in that it does not provide us with the
Sobolev inequality for p = 1. On the other hand it is unifying, as it gives the Sobolev
and Morrey embedding theorems and a compactness result by using a single representation
formula.

To clarify the use of this method to the study of the so-called Hérmander’s operators we
next focus on the degenerate Kolmogorov % on R?"*1  which is one of the simplest examples
belonging to this class. Let € be an open subset of R?"*! and let u be a smooth real valued
function defined on Q. We denote the variable of R?"*! as follows z = (z,y,t) € R® x R" x R,
and we set

Lou = Agu+ (x, Vyu) — O, Agu = Z agju. (1.12)
j=1

As we will see in the sequel (see equation (4.1) below) the function I' defined as

C 2 2
D(e,y,t) = o exp (—BE =392 —3W0) - for (2,4,1) € R2"xJ0, +oc,
[(z,y,t) =0, for (z,y,t) € R?"x] — o0, 0],
is the fundamental solution of .%. Here ¢,, = (%7;/)271 In particular, in analogy with the heat



equation, we have that the function v defined as

2 (1.13)
/Rgn Jt t[F(w_g’y—i_(t_T)é_nvt_T)f(§>7777_)d§d7’]d7'

is a solution to the following Cauchy problem

Zou=f in R?x|tg, +oo],
u|t=to = in RQH.

whenever f and ¢ are bounded continuous functions.
A remarkable fact is that a kind of convolution is hidden in the expression (1.13). More
specifically, we define the operation “o” by setting

(x7 y? t) © (57 777 T) = (m + €7y + 77 + Tx7t + T)? (./1:’ y? t)’ (57 777 T) E R2n+17 (1'14)

and we note that (R2”+1, o) is a non commutative group. The identity of the group is (0,0, 0)
and the inverse of (z,y,t) is (—z, —y + xt, —t). With this notation, it is easy to check that
the expression appearing in (1.13) can be written as follows

($7€7y+(t77—)€*nat77) = (6’77’7')_10(1:7y,t),

Moreover, the group (RQ”‘H,O) is homogeneous with respect to the dilation defined as
dy(z,y,t) == (rx,r3y, r2t), in the sense that

dT((xvyut) ° (57777 T)) = d’/’(‘rvyut) © dr(§77777—)7 ($7y7t)7 (57777 T) € R2n+1vr > 0. (115)

This algebraic structure was introduced and studied by Lanconelli and Polidoro in [11]. In

[11] it was also noticed that I' is homogeneous of degree —4n with respect to (dy),, that is
1
I(dv(z,y,t)) = Wf(x,y,t), (z,y,t) € R* T > 0. (1.16)
Moreover, if we let z = (z,y,t),( = (&,m,7), then (1.13) can be written as follows
ue) = [ T(Ent) tependsdn — [ D(CtenfOde (L)
R27 RQ"X}to,t[
In particular, if v € C§°(R*"*!) and supp(u) C {¢ > to}, then we have that
u(z) = —/ (¢ o 2)%u(C)d¢, for every z € R, (1.18)
R2n+1

which is analogous to (1.1). Summarizing: the operation in (1.18) is considered here as a
convolution with respect to the non-Euclidean operation “o” defined in (1.14), with a kernel I"
that is homogeneous whit respect to the anisotropic dilation d,.. Based on this representation



formula, we prove Sobolev and Morrey theorems for solutions to Kolmogorov equations in
divergence form Zu = div,F + f, where

Lu = divy (A(2)Vgu) + (z, Vyu) — . (1.19)

Here A is a n x n symmetric matrix with bounded and measurable coefficients and, for every
vector field F' € C1(R?"*1 R") we denote div,F(z,y,t) := > i=1 0 Fj(z,y,t). In order to
simplify our treatment, we suppose that F' = 0 and f = 0, so that u is a solution of Zu = 0.
In this case we have that Zyu = div, (I, — A)V u, where I,, denotes the n x n identity matrix.
Then, an integration by parts in (1.18) gives

ue) = [ (= AQIVE(E 02). Veule) de. (1.20)

for every solution u to Zu = 0. It is known that the derivatives O¢,T',..., 0, I' are homo-
geneous functions of degree —(2n + 1) with respect to the dilation (d;),.,. Moreover, the
coefficients of the matrix I,, — A are bounded, then the above identity provides us with the
analogous of (1.2) for the solutions u to the equation Zu = 0.

We point out that only the derivatives with respect to the first n variables of the gradient
of u appear in the representation formula (1.20), then a Sobolev inequality holding for all
functions cannot be obtained from (1.20), because of the lack of information on the remaining
n direction. Nevertheless, this formula is used by Cinti, Pascucci and Polidoro in [14, 5]
to prove a Sobolev embedding theorem for solutions to the Kolmogorov equation .Zu = 0.
Indeed, in [14, 5] the Sobolev theorem for solutions is combined with a Caccioppoli inequality,
still for solutions, in order to apply the Moser’s iterative method and prove an L{s_ estimate for
the solutions to Zu = 0. We also recall that a Morrey result for the solutions to Zu = div, F
was proven by Manfredini and Polidoro in [13], and later by Polidoro and Ragusa in [15] by
the same method used here.

In this note we are concerned with the compactness of the Sobolev embedding for the
solutions to .Zu = 0 for a family of degenerate Kolmogorov equations, defined on RV*1, that
will be still denoted by .. As we will see in Section 3, the operator (1.19) is the prototype
of this family of degenerate operators, and in this case, N = 2n. In Section 3 we introduce
the notation that will be used in the following part of this introduction, and we will state
the conditions (H.1) and (H.2) that ensure that the principal part £y of £ has a smooth
fundamental solution I', which is invariant with respect to a translation analogous to (1.14),
and homogeneous of degree —(@), with respect to a dilation analogous to (1.15). We will refer
to the positive integer Q + 2 as homogeneous dimension of the space R¥*! and plays the role
of n in the Euclidean setting R™ where the elliptic operators are studied. In the sequel p*
and p** denote the positive numbers such that

1 1 1 2

1
— = R — (1.21)
P p Q+2 P p Q+2
Clearly, p* and p** are finite and positive whenever 1 < p < Q@+ 2 and 1 < p < 5

respectively.



Our main result is the following Theorem. It provides us with some estimates of the
convolution of a function belonging to some LP space with the fundamental solution I' and
with its derivatives 9;,I', j = 1,...,mq, with my < N. These estimates, applied to the
representation formula for solutions to Zu = 0 given in Theorem 4.1, yield Sobolev theorems,
Morrey theorems and the compactness of the Sobolev embedding.

Theorem 1.1 Let £ be an operator in the form (3.1), satisfying the hypotheses (H.1) and
(H.2) in Section 3, and let I' be the fundamental solution of its principal part. Let also Q + 2
be the homogeneous dimension of the space RNTL and let p be such that 1 < p < 4o00. For
every f,g; € LP(RNTY) we let u,v; be defined as follows

we) = [ TETefOd we) = [ 8T eg Q) de, j= L m
RN+1 RN+1
Then, for every j =1,...,mg we have:

e (Sobolev) if 1 < p < Q+ 2, then there exists a positive constant C,, such that

Vil o= w1y < Cp g5l Lo@a+1y,

e (Compactness) if moreover p < q < p*, then there exists a positive constant 5p7q such
that

~ Q+2)(i-X%
s 0 h) — 03l a1y < O llgs w11 @2 G5),

for every h € RN+L,

e (Morrey) if p > Q + 2, then there exists a positive constant 5’1, such that

~ _Q+2
0 (2) — ;)] < Cp lgjll renan € o 2|77, for every 2,¢ € RVFL
fi j p Y51 LP( )

We also have
Q+2

e (Sobolev) if 1 < p < , then there exists a positive constant C), such that

[ull o= mv+1y < Cp || fll Lo@nv+1y,s
( )
e (Compactness) if p* < q < p*™*, then there exists a positive constant CN'pﬂ such that

~ L
[ul- 0 k) = ull para+1) < Cpg | Fll Lo@ev+ry ”hH(QH)(q p**>,
for every h € RN+1,

2 ~
e (Morrey) if Q;_ <p < Q+2, then there exists a positive constant C, such that

~ _Q+2
u(2) = w(Ol < Cy [ Fll gy IC 0 22557, for every 2,¢ € RN,

6



From the above result and a representation formula for the solution to Zu = 0 we obtain
the following result.

Theorem 1.2 Let © be an open set of RN1L, and let u be a weak solution to Lu =0 in Q.

Suppose that u, 0z, u, . .., 0, u € LP(Q). Then for every compact set K C Q, there exist a
positive constant ¢ such that we have:

o (Sobolev embedding) if 1 < p < Q+2, then there exists a positive constant Cy, such that

mo
ol sy < cp(uunmm iy Hazjuumm),

J=1

e (Compactness) if moreover p < q < p*, then there exists a positive constant 5p7q such
that

mo
j=1
for every h € RNTL such that ||| < g,

e (Morrey embedding) if p > Q + 2, then there exists a positive constant @, such that
- mo 1_Q+2
) = w0 < G Wl + 3 10wl ) 10215,
j=1
for every z,¢ € K such that ||(" o 2| < o.

The following Theorem is related to the main result of the article [2] by Bouchut, where
the regularity of the solution of the kinetic equation

Of + (v, Vaf) =g,  (t,z,0) € QCR xR x R, (1.22)

is considered. Note that the differential operator appearing in the left hand side of (1.22)
agrees with the first order part of £ defined in (1.19). Actually, the notation of the following
result refers to this operator, and, in particular, the homogeneous dimension of the space
R27+1 is in this case Q 4+ 2 = 4n + 2.

Theorem 1.3 Let Q be an open set of R?"* and let f € L2 _(Q) be a weak solution to

loc

(1.22). Suppose that g, f,O0p, f, ..., 00, f € LP(Q). Then for every compact set K C €, there
exist a positive constant ¢ such that we have:

e (Sobolev embedding) if 1 < p < 4n + 2, then there exists a positive constant Cp, such
that

11l Lo (i) < Cp(\lglm(g) vy + Y HavijLP(Q))a
j=1

7



e (Compactness) if moreover p < q < p*, then there exists a positive constant épg such
that

- an+2)(L-L
1f(-oh) = fllLax <Cpq(\lg\|m V1 o) + D 100, fllwe )Ilhll( (i >,
j=1

for every h € R*™+L such that ||h|| < g,

e (Morrey embedding) if p > 4n + 2, then there exists a positive constant ép such that

f(z) = F(O] < 5p<!gHm(Q) + o) + ) Hf%jfllm(m> Ig™ oz
j=1

for every z,¢ € K such that ||(" o 2| < o.

The proof of Theorems 1.2 and 1.3 is given in Section 4.

We next give some comments to our main results. We still refer here to the notation
relevant to the operator . defined in (1.19), and to the representation formula (1.20). As
we said above, it holds for solutions to .Zu = 0 then, for this reason, it seems to be weaker
than the usual Sobolev inequality. On the other hand, due to the strong degeneracy of the
operator .Z, its natural Sobolev space Wi,}p is the space of the functions u € LP with weak
derivatives Oy, u,...,0,,u € LP. In particular, it is impossible to prove a Sobolev inequality
unless some information is given on u with respect to the remaining variables y1, ..., y, and
t. We obtain this missing information from the fact that u is a solution to Zu = 0 (or, in
a more general case, to Zu = div,F + f). We also note that the regularity property of the
operator .Z is quite unstable. Indeed, let us fix any xg € R™ and consider the operator .:Z”B,
acting on (z,y,t) € R* ! as follows

.,?Ou = Agu + (9, Vyu) — Ou.

Its natural Sobolev spaces agrees with that of .2, however it is known that a fundamental
solution for % does not exists and our method for the proof of the Sobolev inequality fails
in this case. Actually, it is not difficult to check that the Sobolev inequality does not hold
for the solutions to Zu = 0.

We conclude this discussion with a simple remark. Also when we consider the more famil-
iar uniformly parabolic equations, we find that the natural Sobolev space only contains the
spatial derivatives, and it is not possible to find a simple natural space for the time deriva-
tive. As a matter of facts, several regularity results for parabolic equations depend on some
fractional Sobolev spaces. The situation becomes more complicated when we consider second
order PDEs with non-negative characteristic form analogous to .Z. An alternative approach
to our method, that only relies on a representation formula in terms of the fundamental
solution, is the use of fractional Sobolev spaces (we refer to the articles by Bochut [2], see
also Golse, Imbert, Mouhot and Vasseur [9]) to recover the missing information with respect
to the variables y1,...,¥y, and t.



This article is organized as follows. In Section 2 we give a comprehensive proof of the
Sobolev embedding, of its compactness, and the Morrey embedding, following the method
above outlined. In Section 3 we recall the tools of the Real Analysis on Lie groups we need
to prove Theorem 1.1, and we give its proof. In Section 4 we discuss some applications of
Theorem 1.1 to the solutions of Zu = 0. Section 5 contains some comments about the
possible extension of Theorem 1.1 to a family of more general operators considered by Cinti
and Polidoro in [6].

2 Continuous and compact embeddings: the Euclidean case

In this Section we give a comprehensive proof of the Sobolev embedding (1.8), the Morrey
embedding (1.10), and of the inequality (1.11) from which the compactness of the Sobolev
embedding follows. As said in the Introduction, all these results rely on the representation
formula (1.2), which gives the bound (1.5) that we recall below

u(@] <o [ oy VUl g, for every u e GF(RY).
RTL

With this aim, we first recall the weak Young inequality that gives the Sobolev embedding,
then we prove (1.9) and we deduce from this and (1.5) the Morrey embedding (1.10), and
that stated in the inequality (1.11).

2.1 Some preliminary results

For a given positive a we denote by K, any continuous homogeneous function of degree —a;,
that is a function satisfying

Ky(rz) =r"*K,(z), forevery z € R"\ {0}, and r > 0.

We easily see that
|Ko(z)] < %, for every xz € R™ \ {0}, (2.1)
x

)

where ¢, := max|,—; |Kq(z)|. In particular, K, belongs to the space LI _ (R™), for ¢ = n
o'
that is
Cc\1?
meas{z € R" | |Kq(z)| > A} < ()\) , for every A >0, (2.2)

for some non-negative constant C. Here meas E denotes the Lebesgue measure of the set E.
Moreover we define the seminorm of K, as follows

HKO‘”Lgve L(Rn) = inf {C' >0 (2.2) holds}.

a.

From (2.1) it plainly follows that C' < cawg/ " We next recall two elementary inequalities
that will be useful in the sequel. For every R > 0 we have that:



o K, € Lq({a: eR™| |z| < R}) if, and only if, ¢ < n Moreover, there exists a positive
«

constant cq 4, only depending on K,,n and ¢, such that

IKall pa(wernzi<ry) < CagBRe (2.3)

e K, € Lq({m eR" | |z| > R}) if, and only if, ¢ > n Moreover, there exists a positive
«

constant cq 4, only depending on K,,n and ¢, such that
1K all Lo((oern o> Ry) < CaglRe " (2.4)

The following weak Young inequality holds (see Theorem 1, p. 119 in [16], where this result
is referred to as Hardy-Littlewood-Sobolev theorem for fractional integration).

Theorem 2.1 Let K, be a continuous homogeneous function of degree —a, with 0 < av < n.
1 1
Let p,q be such that 1 <p < q < 400 and that 1 + — = — + e Then, for every f € LP(R™)
p n

q
the integral K, = f(x) is convergent for almost every z € R™. Moreover,
- if p > 1, then there exists Cqp > 0 such that || Ko  f|ra@mn) < Capll fllze@ny,
-if p=1, then there exists Co1 > 0 such that || Kq * f||;a L(Rn) < Collfllr@n)-

In order to prove the Morrey embedding (1.10) and the compactness estimate (1.11), we
state and prove the following lemma.

Lemma 2.2 Let K, € C1(R™\{0}) be any homogeneous function of degree —cv, with 0 <
a < n. Then there exists a positive constant M, such that

21

|Ko(x) — Ko(y)| < M, lz =yl for every x,y € R"\{0} such that |z —y| < 5

1
Proof. We first prove the result for x such that |x| = 1. In this case |z — y| < 5 and by the
Mean Value Theorem there exists 6 € (0,1) such that

|Kao(z) — Ka(y)| = {(z —y), VEu (02 + (1 - 0y)))| < Mal|z — yl,
where

M, = max |VEq(2)|. (2.5)

5<)21<3

|z

Consider now a general choice of z,y € R™\{0} with |z —y| < 5 Being K, homogeneous

M,
o () - (i) |<i
o ol )| 51

=1.0

of degree —«, we obtain

1

Jz|

|z -y
NEEE

€ Y

|Ko(2) — Kaly)| = [e]  Jal

]

being M, as in (2.5), because

10



In order to prove the Morrey embedding (1.10) and the compactness of the Sobolev
embedding for p < ¢ < p* we rely on the following argument. We choose any u € C5°(R™), h €
R™ and we set

v(x) :=u(z + h) —u(z), for every x € R", (2.6)

then

v(z) = (VI(z +h —y) = VI(z —y), Vu(y)) dy

/{yGR”:w+hy|>2|h|}

/ (VE(w +h =), Vuly) dy
{yER":|z+h—y|<2|h|}

+ —(VI(z —y), Vu(y)) dy =: Ia(x) + Ip(z) + Ic(x). (2.7)

/{yeRn:x+hy|<2|h|}

We next rely on Lemma 2.2 and on (1.3) to estimate the terms 14, Ip and [ as follows

1
[Ta(z)| < M|h| ————|Vu(y)| dy,
{yeR™ |z+h—y|>2/n} [T +h —y|"
1
Ia(a)| < co [ L Vu(y)dy, 28
" {yeR™:|z+h—y|<2|h|} |JI +h— y|n ! ( )
1
o)l < e [ L \Vu(y)|dy,
{yeR":|z+h—y|<2|h|} |z — |
where M := max lﬁgjxkf‘(z)\.

3<l2I<3 g k=1,..n

2.2 The Sobolev and Morrey embedding theorems

As we said in the Introduction, Theorem 2.1 combined with (1.5) immediately yields the
following result

Theorem 2.3 Let 1 < p <n. Then there exists C, > 0 such that:

|ullp < Cpl|Vull, for every w € L (R™)  such that Vu € LP(R"),

np
n—p

where p* =
We next turn our attention on the Morrey’s Theorem.

Theorem 2.4 (Morrey’s Theorem) Let u: R™ — R and p > n. If Vu € LP(R™), then u
is continuous and

lu(z 4+ h) —u(z)] < Chyp Vu\|p\h|1_%, for every x,h € R", (2.9)

for some positive constant Cy, 5, depending only on p and n.
In particular WYP(R™) is continuously embedded in the space of Hélder continuous func-
tions CP(R™), with 8 =1 — -

11



Proof. Consider a function u € Cg°(R"), let ,h € R", and v(z) be the function defined in
(2.7). We next estimate I4,Ip and I by using the Holder inequality.

From the first inequality in (2.8) and (2.4), with &« = n and ¢ = Ll’ we obtain
p J—

[La(z)| < M|A|||Vull Lo @)

’ 1

ER

La({|z|>2|h|})
n(p—1)

—-n 1—n
= MIn[[|Vull o@nyenq2IR1) 7 = Mal|Vull Loy 2],

for some positive constant M4 only depending on M, p and n. Moreover, from the second
inequality in (2.8) and (2.3), with a =n —1 and ¢ = Ll’ we find
p p—

175 (2)| < el Vel Lo n)

‘ 1

21"l gzt <2iny)
nle=l) _piq -z

:CnHVUHLP(R")CH—Lq@’hD P :MBHVUHLP(R")‘M P,

where Mp is a positive constant only depending on p and n. Finally the last term in (2.7)
can be estimated similarly to the second one, observing that |z —y| < |z +h —y|+ |h| < 3|h|,
thus getting

= Mc||Vaul| po@ny b7,
La({|z|<3|n|})

(e (2)] <en||VullLr@n)

1
B
for some positive constant M. We note that the L¢ norms of the functions z — |z|™" and
z + |z|7"*! appearing in the above estimates are finite thanks to the assumption p > n.
Then (2.9) is obtained with C,, , := M4+ Mp + Mc. This proves our claim for u € C5°(R").
The general case follows by a density argument. O

We next prove the compactness of the Sobolev embedding (1.11) for p < ¢ < p* starting

again from (2.7). Here we use the Young inequality instead of the Holder inequality.

Theorem 2.5 Let p,q > 1 be such that p < q < p* = n”—_’z). Then there exists a positive
constant Cyp, 4 depending on n,p,q such that

Q=

1
1)

for every u € C§°(R™) and for any h € R™. In particular, as long as ¢ < p*, we have

Juth + ) — ull aany < Cog [ Vel ogany 11"

lu(h + ) — ull Lagrny — 0 as |h| — 0.

Proof. Consider a function u € C§°(R"), let z,h € R", and v(z) be the function defined in
(2.7). We next estimate the L? norm of 14, Ip and I¢ by using the Young inequality. To this
aim we introduce the exponent r defined by the identity

1 1 1

1+-=-+-3, (2.10)
g T P

12



and we note that

n
1<r<m<:>p<q<p*. (2.11)

From the first inequality in (2.8) and (2.4), with o = n, we obtain
1

LAl Laggry < MRVl Lo @n) ER

L7 ({|z|>2|h|})
n_, n(l—%)
:M|hy||VuHLp(Rn)cn,r(2|hy)r = Ca(n,r)|h|"\a 77"

From the second inequality in (2.8) and (2.3), with a = n — 1, we obtain

1
||IB||Lq(]Rn) < cnl|Vul| o rn) ’]2\"—1

Lr({|z|<2|hl})
()
= cnl|Vul[ Lo ey cn—1,(2|R]) - = Cp(n,n)||[Vul Le@n|h| \® 77/,

where Cp(n,r) is a constant depending on n and r (and thus on n, p, ¢). The same argument

applies to I¢, so that, provided that we consider the norm instead of

1
|Z‘n71

Lr({l=|<3[h[})
as in the proof of the Morrey’s theorem. We then find

1
Bl ‘ Lr({|=1<2nl})’

(o1
1ol gy < Col, PVl ogar 1G5,

We note that the L™ norms of the functions z + |z| ™™ and z + |z|~"*! appearing in the above
estimates are finite if, and only if, the condition (2.11) is satisfied. The thesis is obtained
with Cp, 4 := Ca(n,r) + Cp(n,r) + Cco(n,r) for u € CP(R™). The general case follows by a
density argument. O

2.3 A more general compactness result

We note that the Theorem 2.5 only applies to a kernel that is homogeneous of degree —n+ 1.
Actually, the method used in its proof also applies to any general homogeneous kernel K,
with 0 < a < n, as those considered in Theorem 2.1. In the following statement we denote
by u the convolution K, * f, that is

uw) = | Kale=9)fy)dy.
Theorem 2.6 Let K, be a C*(R™\{0}) homogeneous function of degree —a, with 1 < a < n,
and let p,q > 1 be such that ¢ > p and

11 1
B P (2.12)
n P q n

1

Then there exists a positive constant épm depending on n,p,q, such that

lu(h+ ) = ullzagny < Cpg If | o@ny Rl
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for every f € LP(R™) and h € R™. Here r is the constant introduced in (2.10), that is
1

n
1+ - = -4 —. Moreover the exponent — — « is strictly positive.
q rop r

Proof. We choose x,h € R™ and let v be defined as in (2.6): v(z) = u(x + h) — u(z), and we
consider three integrals v(x) = Is(x) + Ip(z) + Ic(x) as in (2.7). We proceed as we did in
the proof of Theorem 2.4. We find

1
{yeRm[a+h—y|>2n)} 1T+ B —y[oF!

I5(2)] < ca / L i)y,

{(yeRm:jat+h—y|<2|n)} [T +h —y[®

Ie(x)| < ca / L)y,

{yeRn:|z+h—y|<2n]} 1T — Y|*

[La(z)] < Malh| [f(y)l dy,

being M, := max |VK,(z)|. In order to use the Young inequality, we recall that

5<[21<3

1

| 2]+t = Ca+1,r(2’h‘)?_(a+1)»

L7 ({yeR™:|2|=2[h[})

where r is the exponent introduced in (2.10) and we note that the above integral converges
if, and only if, (o + 1)r > n. Moreover,

1

[2]*

= Ca,r(Q‘hD%_a’
LT ({z€R™:|2|<2|h[})

and the above integral converges if, and only if, ar < n. Summarizing, the two above integrals
are finite if, and only if|

SRS (2.13)
« (6%

n
which is equivalent to (2.12). We also note that the exponent — — « is strictly positive.

r
We next proceed as in the proof of Theorem 2.4. By the Young inequality we deduce
1Zall pozny < Caln o) B G f] o eny -

15 ] gy < Crlnya, ) A=) (1] gy
el paggeny < Coln, a,r)|h| (=)

33

11 Lo @ny »

where GA(n,a,r),ég(n,a,r), and ac(n,a,r) are positive constants only depending on
n,p,q, on ¢q and on M,. The thesis is obtained with Cp,, := Ca(n,a,r) + Cp(n,a,r) +
Co(n,a,r). O

Remark 2.7 The statement of Theorem 2.6 is more involved with respect to that of Theorem
2.5 as we don’t have a natural counterpart of the Sobolev exponent p* for any a €]0,n[. We
list here the explicit conditions on q for the validity of (2.12). We discuss specifically the case
1 < p < n as we are interested in the compactness of the Sobolev embedding.

14



(i) If‘0<a<n—2 then

(i.1) If 1 <p<L then
n— o

np - np
n—pn-—1-—a) 1 n—p(n — «a)
(i2) If " <p< th
i en
n—a °F —-1-a

> 1 np np
e 'n—pn—1-—a) n—p(n — )

(i.3) If # < p < n then no values of q are available
n—1—a«

(ii) If[a=n 2] then

(ii.1) If1 < p < g then

* np np
b =—<4q
P n—2p
y n
(i.2) If§ < p<n then
q>max{1, P }: P =p*
n—p n—p

(i) If‘n—2<0z<n—1 then

(iii.1) If 1 <p < —— then
n—«o

np np
<g<L< ———
n—pn—1—a) 1 n—pn—a)
(i.2) If n < p<n then
n—a
np np
> 1, —
! m“{ n—Mn—®} n—pn—1-a)
(iv) If then for any 1 <p <n
n—p

(v) If‘n—l<a<n‘thenfo7"cmy1<p<n

np np
<g< ————.
n—pn—1-a) 1 n—p(n— «)
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3 Continuous and compact embeddings for degenerate Kol-
mogorov equations
The aim of this section is to prove compactness estimates for weak solutions to a family of

degenerate Kolmogorov operators that includes the one in (1.19) as the simplest prototype.
Specifically, we consider operators in this form

ZLu(z, Z Oz, (@i j(w, )0, u(z, 1)) Z bi jTi0z;u(z,t) — Opu(w, ), (3.1)

1,j=1 4,j=1

with (z,t) = (z1,...,2n,t) € R¥TL. Here mg € N is such that 1 < mg < N. In the sequel we
will also use the following notation z := (x,t), and we always assume the following hypotheses:

H.1) The matrix A = (a; (2))i i=1....mo 1S symmetric, with measurable coefficients and there
J J=1,..;mo y
exists a positive constant y such that

_1’5‘2 < Z az,] €l€] < M’£‘2
i,j=1
for all z € RV*! and ¢ € R™0,

(H.2) The matrix B has constant coefficients. Moreover there exists a basis of R™ such that
the matrix B can be written in a canonical form:

0 Bi 0 .. 0
0 0 By ... 0
B=|: : i o
0 0 0 .. B
00 0 .. 0

where By, is a matrix myg_1 X m with rank my, £k = 1,2, ...,r with
T
k=0

We prove in detail Theorem 1.1 along the same techniques outlined in the Introduction for
the operator . in (1.19). In particular, we will rely on a representation formula analogous
to (1.2) in terms of the fundamental solution to the operator

mo N
Lou = O u+ Y bijuidsu— Opu. (3.2)
i=1 i,j=1

Remark 1. Tt is know that Assumption (H.2) is equivalent to the assumption of hypoellipticity
of % (see [11] and its bibliography). This means that any function u which is a distributional
solution to Zyu = f in some open subset Q of RVF! is a O function whenever f is C™.
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In order to simplify our statements, in the sequel we adopt the following compact notation.
If I, is the identity matrix mg x mg, we set

mo ) N Imo 0
Amo = Z@ml, Y = Z bz,szam] - 81‘/7 AO = 0 0/
1=1

ij=1
In particular we will write
L = Amo +Y = le(AoV) +Y.

We next introduce the non-Euclidean geometric setting suitable for the study of .Z, the
fundamental solution of % and the definition of the convolution with homogeneous kernels.

3.1 Dilation and translation groups associated to .

We recall here some invariance properties of the operator 2. We refer to [11] where the
definition of translation group and dilation group for Kolmogorov operators have been given
for the first time. Let

(x,t)o(&,7)=(+ E(T)z,t +7), E(t)= exp(—tBT), (x,t),(&,7) € RN+ (3.3)

D(\) = diag( Mg, N2 Lonys oo, X7, 002), A>0 (3.4)
where Ip,; denotes the identity matrix m; x m;. It is known that (RN*1 0) is a non com-
mutative group, and % is invariant with respect to the left translations of (RV*1 o), in the
following sense: if we choose any ¢ € RVT! and we set v(z2) := u({ 0 z) and g(2) := f({ 0 2),
then the have

Zou(z) = f(2) < Zov(z) = g(2).

Moreover, % is invariant with respect to (D()))x>0, with the following meaning:
ZLu(z) = f(z) &  Luw(z) = \h(z).

Now w(z) := u(D(N)z), h(z) :== f(D(M\)z), and X is any positive constant. The zero of the
group is (0,0) and the inverse of (&,7) is (&,7)"! = (—E(7)¢, —7). Moreover the following
distributive property holds:

D) (z 0 ¢) = (D(A)2) o (D(A)()

We summarize the above properties by saying that .7} is invariant with respect to the homo-

geneous group (]RN+1, o, (D()\))A>0)-

In the sequel we will use the following notation
D(X) = diag(A\, X2, ..., XV \2),

where, in accordance with (3.4) a1 = ag = - = Qg = 1, Qmgt1 = = Qngtm;, =

3, <o Omg4mi+-4m,_1+1 = - = ON = 2r + 1.
We define now a norm of RV homogeneous of degree one with respect to the dilation
introduced before.

17



Definition 3.1 For all z € R¥*1\ {0}, we define the norm ||z|| = p, as the unique positive
solution to:

2 2 2 2
x x x t

2clyl 2§2 +..t 25 =1
p P prN  p

and ||0|| = 0.

This norm is homogeneous with respect to the dilation group (D(A))aso as long as the
following property holds:

ID(N)z|| = M|z|| Yz € RV {0} and A > 0.

Moreover the following quasi-triangular inequality holds. There exists a constant ¢y > 1 such
that
lzo ¢l <er(l=l+1Ch), 7 < erlll, (3.5)

for every z,¢ € RN+l We denote by d(, 2) := ||z~! o || the quasi-distance of z and (. We
denote by By(z) the open ball of radius ¢ and center z with respect to the above quasi-distance

By(z) = {¢CeRY™ |27 o ¢ < 0} (3.6)

Note that the topology induced on RNV*! from the norm introduced in Definition 3.1 is
equivalent to the Euclidean one.

Remark 3.2 The Lebesgue measure is invariant with respect to the group (RN 1 o). More-
over, as long as det D(\) = A9*2 where

Q =mg+3mi+..+ (27“ =+ 1)mr
we have that the following identity holds:
meas(B,(0)) = r%*2meas(B1(0)),

where meas(B) indicates the Lebesgue measure of the set B. For this reason, we will refer to
(Q +2) as the homogeneous dimension of R¥*1 with respect to the dilation (3.4).

We also note that, in view of the structure of the matrix B and of the definition of E(7),
we have that detE(7) = 1 for every 7. In particular, the Jacobian determinant of the left
translation (z,t) — (&,7) o (x,t) agrees with 1 for every (&,7) € RV*L. The same is true for
the Jacobian determinant of (£,7) — (£,7)71. As a consequence we have that

/f((oz)dz: f(w)dw, (oAd:={w=C_oz|z€ A},

A (oA

/ f(z7Y)dz = f(w)dw, At ={w=2""|z€ 4}, (3.7)
A A-1

/f(z_log)dz:/ fw)dw, A'o¢:={w==z:"1o(|z€ A}
A A—1lo¢

The following results is the analogous of (2.3) and (2.4) in the setting of the homogeneous
Lie group (RV*1 0, (D(X))rs0)-
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Lemma 3.3 Let K, denote any continuous function which is homogeneous of degree —a
with respect to (D(X))aso, for some a such that 0 < o < Q + 2. For every R > 0 we have
that:

2
o Ko € L1({z € RN*! | ||lz|| < R}) if, and only if, ¢ > @+ . Moreover, there ezists a
positive constant ¢y q, only depending on Ko, (D(X))r>o and q, such that

e,
I Kallacrzerni)z<ry) < CaqB @, (3.8)

2
o Ko € LU({z e RN | ||z|| > R}) if, and only if, ¢ < @+
positive constant ¢q. 4, only depending on K, (D(X))xso and q, such that

. Moreover, there exists a

~ Qt2
HKOZHL‘I({ZERN+1|||ZHZR}) S Ca’qR q 04. (39)

Proof. We compute the integrals by using the “polar coordinates”

(

x1 = p* cosYPq... COSWN_1 COSYN
Tog = p™*2 cos ... COSYn_1 Sin YN

Ty = p*N cos 1 sin Yo
t = p?siny.

Note that, in accordance with the Definition 3.1, the Jacobian determinant of the above
change of coordinate is homogeneous of degree () + 1 with respect to the variable p, that is
J(p,) = p@t1J(1,4). The claim then follows by proceedings as in the Euclidean case. [

3.2 Preliminary results on convolutions in homogeneous Lie groups

We recall some facts concerning the convolution of functions in homogeneous Lie groups. We
refer to the work of Folland [10], and to its bibliography, for a comprehensive treatment of
this subject. The first result is a Young inequality in the non-Euclidean setting

Theorem 3.4 Let p,q,r € [1,+00] be such that:
14+-==-+-. (3.10)
qQ p T
If f € LP(RNFYY and g € L™ (RN, then the function f * g defined as:

Fro@i= [ T o090
RN+1
belongs to LI(RN*1) and it holds:
”f*9||Lq(RN+1) < Hf||LP(RN+1)HQHLT(RNH)-
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The following two theorems are the counterpart of Theorem 2.1 and Lemma 2.2 in Section
2, respectively.

Theorem 3.5 (Proposition (1.11) in [10]) Let K, be a continuous function, homogeneous of
degree —a with 0 < o < Q+ 2, with respect to the dilation (3.4). Then, for every p €]1, +o00],
the convolution u of K, with a function f € LP(RN*)

u(z) = Ka(¢Tho2)f(O)dC, (3.11)

RN+1
is defined for almost every z € RNT! and is a measurable function. Moreover there exists a

constant C, = Cp(p, Q) such that

[ull a1y < Cp foax | Ka ()l o @n+ry,

for every f € LP(RN*Y), where q is defined by

TREE
¢ p Q+2
For the proof of the next result we refer to Proposition (1.11) in [10] or Lemma 5.1 in
[13].

Theorem 3.6 Let K, € CY(RY*T1\{0}) be a homogeneous function of degree —a with respect
to the group (D(X))x>o. Then there exist two constants k > 1 and My > 0 such that:
Iz~ o gl

[Ka(C) — Ka(2)| < Ma G

for all z,¢ such that ||z]| > k|z=t o (.

3.3 Compactness estimates for convolutions with homogeneous kernels

Theorem 3.7 Let K, be a CL(RVT1\ {0}) homogeneous function of degree —a with 0 <
a < Q + 2, with respect to the dilation (3.4). Then for every p,q > 1 such that ¢ > p and

1
o1 2

a-+1 1
P q Q+2

1
Q+2

< (3.12)

there exists a positive constant ép’q depending on «,p,q and on the dilation group (D(X))y

such that
Q+2

Ol e vy

[u(- o h) — ul| pagn+1) < Cpgllh|
for every f € LP(RN*T1), and h € RN, Here r is the constant defined by (3.10), that is

1+1—1+1

qg r p

t @+2
T

and the exponen — « 1s strictly positive, because of (3.12).
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Proof. We proceed as in the proof of Theorem 2.6. We choose z, h € RV and we let
v(z) ;== u(zoh) —u(z). (3.13)

By the formula (3.11) we have v(z) = I4(2) 4+ Ip(2) + Io(2), where

Iaz) = j/ (Kal¢ 020 h) — Ka(C 02)) £(C)dC
{¢eRN+1:||¢~Lozoh||>k| k| }

Ta(z) = / Ka(¢ 020 h)F(C)dC, (3.14)
{¢eRN+1:||¢~Lozoh|| <kl h|}

fe() = / CKa(C o 2)f(Q) e
{¢eRN+1:||¢~Lozoh|| <kl h|}

Then, as in the proof of Theorem 2.6, we find
1

CERN+Ly||c—ozoh|>kh|} [[(T1 0 2 0 Al|*F

\DwmqumA (O]

\Ewm%/ S ST

{ceRN 1 |c~Lozonfl<nllnl} €71 0 2 0 B[

~ 1
el <o [ I TG IES
* Jicern+ric-tozon<afiny 16710 2]
The first estimate follows from Theorem 3.6 and the constant ¢y is the one appearing in (3.5),
while Cq = mawaH:l Ka(w).
We next compute the L™ norm of the homogeneous functions appearing above. In view
of Remark 3.2 and Lemma 3.3, we have that

1
H IC=1 oz o hjjett

=~ Q+2_
= CA(ﬁ Q)HhH " ( +1)7
LT ({¢eRNF1:||¢~ ozoh]| >k A })

where 7 is the exponent introduced in (2.10) and éA(r, Q) is a constant depending on
and r (hence on @, p,q), and on the dilation group (D())),s,. Using again Remark 3.2 and
Lemma 3.3, and we also find

1 ~ Q+2
‘Ilc-lozohlla = Cp(r,Q)l[p] "7,
LT ({CeRNFL[¢~ Fozohl|<x][h]1})

The same argument applies to fc, by using the quasi-triangular inequality (3.5), so that

1 ~ Q+27a
'Hglozow = Co(r, Q)[R 77,
L7 ({CERNFL: ¢ Tozoh]|<x[|All})

Note that the three above integrals converge if, and only if,

2 2
@ <7’<Q+ . (3.15)
a+1 «
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We note that (3.12) is equivalent to (3.15) and that the second inequality in (3.15) says that
the exponent % — « appearing in the statement of this Theorem is strictly positive. By
the Young inequality (Theorem 3.4) we conclude that

T ~ Q+2_
I gy S TMaCalr, QRIS o
T, ~ Q+2_ .,
Is |, eny S CaCB QIR I o)
f < 61 h Q+2_a
B La(RN+1) = Ca C(T’ Q)H H T ||f||LP(]RN+1) .
The thesis is obtained with Cyq = erMaCa(r, @) + caln(r, @) + caCe(r, Q) 0

Remark 3.8 Similarly as we did in Remark 2.7, we can state the conditions on q for the
validity of (3.12). They can can be obtained by substituting the dimension n with the homo-
geneous dimension Q) + 2. We explicitly write here the condition for a = Q and a = Q + 1,
which occur in the representation formulas for the solutions to Lu = f. Moreover, when
a=Q + 1, we only consider the case 1 < p < Q + 2, as we apply Theorem 3.7 to prove the
compactness of the embedding of Theorem 3.5, which holds 0n2ly forp < @Q+2. For the same

reason, when a = @, we only consider the case 1 < p <

2
(i) If a =Q and1<p<QT+, we have that p* < q < p**,

2

(i) Ifa=Q+1 and 1 < p < Q + 2 we have that p < q < p*.

3.4 Proof of our main result

Proof of Theorem 1.1. The proof of the Sobolev inequality is a direct consequence of Theorem
3.5, with a = ) + 1 when considering vy, ..., vp,, and a = Q) as we consider u.

The compactness of the embedding is a direct consequence of Theorem 3.7. As noticed
in Remark 3.8, it applies to the derivatives O I', that are homogeneous functions of degree
—(Q+1), only when p < g < p*. Moreover, a direct computation based on (3.10) shows that

Q+2
r

1 1
-(Q+1)=(Q+2) (—) (3.16)
q P
Analogously, as I' is homogeneous of degree —Q), we need to consider p* < ¢ < p**. In this
case, by using again (3.10) we find

Q+2
r

1 1
Q=(Q+2) (q p**) . (3.17)

The proof of the Morrey embedding is obtained by the same argument used in the proof
of Theorem 2.4. We consider the function v(z) = u(z o h) — u(z) introduced in (3.13) and,
as in the proof of Theorem 3.7, we write v(z) = I4(z) 4+ Ip(z) + Ic(z), where the functions
I4,1p,Ic are defined in (3.14). The conclusion of the proof is obtained by using the Young
inequality stated in Theorem 3.4. g
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4 Representation formulas

4.1 Fundamental solution to .4, and representation formula

In this Section we focus on the representation formulas for the equation Zu = 0, for £
satisfying the assumptions (H.1) and (H.2), then we prove Theorem 1.2.

We first recall the definition of weak solution to £u = 0, then we recall that, under these
assumptions, the fundamental solution to % has been derived by Hérmander in [10]. We

say that u is a weak solution to .Zu = 0 in an open set @ C RN*1if ¢, Op, Uy . . ., 8xm0u, Yue
L% (Q) and

| ~AEVu), Vo) + o) Y u() ds = o
Q
for all ¢ € C§°(£2).

With the notations introduced in Section 3, we let

C(t) = /Ot E(s)AoET (s)ds

The assumptions (H.1) and (H.2) guarantee that the matrix C() is strictly positive for all
t > 0. In this case its inverse C~!(#) is well defined and the fundamental solution to % with
singularity at the origin of RV*1, is given by

L R PR
T((z,t),(0,0)) = { \/detC (1) p (=1 {C7 Oz 2)), ift>0, (4.1)
0, if t < 0.

To simplify the notation, in the sequel we will write I'(x,t,£, 7) instead of I'((z,t), (&, 7)),
and I'(z,t) instead of I'(x,¢,0,0). The fundamental solution I'(x,t,&,7) of £ with pole at
(¢,7) is the “left translation” of I'(-,0,0) with respect to the group (RV*1! o):

[(x,t,&,7) =T(( 7)o (x,1),0,0).

Let us explicitly remark that I'(-, 0, 0) is homogeneous of degree —@Q with respect to the group
(D(A\))aso0 and 0z,I'(+,0,0) is homogeneous of degree —Q — 1, for j = 1,...,mg. Moreover,
also 0¢,I'(0,0, -) is homogeneous of degree —Q — 1, for j = 1,...,mo.

We next represent weak solutions to Zu = 0 as convolutions with the fundamental
solution I' to £y and to its derivatives O¢, I, ..., O I

m

Consider any open set @ C RV*! let u be a function such that w, dz,u, ... ,&Emou, Yu €
LY (), and n € C§°(Q) is any cut-off function, then, by an elementary density argument we
find

(o)) == [ L) €)dc =
oo (Ve Vo d = [ 0 Y il .

]RN+1

23



If moreover u is a weak solutions to .Zu = div(AoF) + f, then ZHu = div((4p — A) Vu +
AgF) + f, for some f € LF () and some vector valued function F' = (Fy,..., Fy,,,0,...,0)

loc

with Fi,..., Fp, € L} (), then we obtain the following representation formula introduced

in Theorem 3.1 of [13], and used in the proof of Theorem 3.3 of [14].

Theorem 4.1 If u is a weak solution to Lu = div(AoF)+ f, in some open set 2 C RN+L
with f,Fy, ..., Fn, € L (Q), and n is the cut-off function defined above, then:

loc

(r)(z) = [ (D) (o = ¥+ AP~ [ )(AV9, T) + )G

RN+1

b [ AV G @ dc - [ T
(4.2)

In the following statement B,(zp) denotes the ball defined in (3.6), and cr is the constant
in (3.5).

Proposition 4.2 Let Q be an open set of RVNT1 and let u be a weak solution to Lu =
div(AoF) + f in Q. Suppose that u, f,0p,u, ..., 0p, u, Fy, ..., Fy, € L (). Then for every

© Y Tmg loc

zp € Q, and p,0 > 0 such that the ball B,(zg) is contained in 2, and o < QL, we have:
cr

e (Sobolev embedding) if 1 < p < Q+2, then there exists a positive constant C), such that

ull Lo (B, (o)) < Co(lullLo(By(z0)) + I1FlLr(By(20)
+ 1 A0V ull Lo (B,(z0)) + 1 A0F || Lo (B, (20)))»

e (Compactness) if moreover p < q < p*, then there exists a positive constant ép,q such
that

[u(- 0 h) = ull pa(s, (z0)) < Cpa (Ul Lo(B,(z0)) + 1 F 1l Lr(B,(x0))
1Al o + 140 F o, ) NI @F2G75),
for every h € By(z0),
e (Morrey embedding) if p > Q + 2, then there exists a positive constant @, such that
u(z) — w(C)| < Cp([ullLo(B, (o)) + 111 Lo (B, (20))
+ 11 A0Vl Lo (B, (20)) + A0 F | o(B, (o)) 1€ 0 o5,

for every z,( € By(20).

Proof. We apply Theorem 4.1 with a function n supported in the ball B,(29) and such that
P(z) = 1 for every z € Bac,o(20). It is not difficult to check that a cut-off function with
the above properties exists (see formula (3.3) in [13] for instance). Note that the integrals
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appearing in the equation (4.2) involving 0y, u, . .. ,&Emou, Fy,..., F,, are convolutions of
O, I, ..., 8§m0I‘, that are homogeneous kernels of degree —(Q+1), with functions belonging to
LP(By(#0)) multiplied by bounded functions compactly supported in B,(2p). For these terms
of the representation formula (4.2) the thesis then follows from a direct application of Theorem
1.1. Indeed, by our choice of 1, we have u(z) = (nu)(z) for every z € B,(zp). Moreover, if
z,h € By(z0p) we also have that z o h € Bac,(20), by (3.5), then also u(z o h) = (nu)(z o h).

We next consider the terms involving uw and f. They are convolutions of I', that is a
homogeneous kernel of degree —(@), with » and f, multiplied by bounded functions compactly
supported in B,(zp). Moreover, u and f belong to L"(B,(20)), for every r such that 1 <r < p.
We then choose r such that

1 1 n 1
rop Q+2
and we apply again Theorem 1.1 with p replaced by r. This concludes the proof. O

Proof of Theorem 1.2. Tt follows from Proposition 4.2 by a simple covering argument. The
constant ¢ can be chosen as follows. We let

2:=min {0 > 0| By(z) C Q for every z € K },

then g := 3L, so that we can choose o = g in every ball of the covering of K. O
cr
Proof of Theorem 1.3. If f is a weak solution to (1.22), then it is a weak solution to
hf+ (v,Vaf) =Ayf + g —div,G, (4.3)
where Gj = 0, f,j = 1,...,n. Note that the homogeneous dimension of the operator in (4.3)
is @ +2 =n+3n+ 2. By our assumptions G; € LP(Q) for every j = 1,...,n. Then the
proof can be concluded by the same argument used in the proof of Theorem 1.2. O

5 Conclusion

The method used in this article for Kolmogorov equations can be adapted to the study of a
wider family of differential operators, provided that they have a fundamental solution and
that are invariant with respect to a suitable Lie group on their domain. Sobolev inequalities
for operators of this kind have been proven in [6]. We recall here the assumptions on the
operators.

Consider a differential operator in the form

m
Lu = Z X (aij(z, t) Xsu) + Xou — Ou, (5.1)
ij=1
where (z,t) = (z1,...,2n,t) denotes the point in R¥*! and 1 <m < N. The X;’s in (5.1)

are smooth vector fields acting on RV, i.e.

N
Xj(a,t) => b(2,6)00,,  j=0,...,m,
k=1
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and every bfe is a C*° function. In the sequel we always denote by z = (z,t) the point in
RY*1 and by A the m xm matrix A = (a; ;)
of &

il m We also consider the elliptic analogous

m
Lu= Y X (ai(z)Xu) (5.2)
ij=1
In both cases we assume that the coefficients of the matrix A are bounded measurable func-

tions, and that A is symmetric and uniformly positive, that is, there is a positive constant p
such that

m

Z aij(z, )&, & > pléf, for every ¢ € R™,
ij=1

and for every (z,t) € RNT! (or for every x € RV as we consider the operator . in (5.2)).

Clearly, the Laplace operator A and the heat operator A — 0, write in the form (5.2) and
(5.1), respectively, if we choose X := 0,, for j =1,..., N, Xo := 0, and the matrix A agrees
with the N x N identity In. In the sequel we will use the following notations:

X=(X1,...,Xm), Y = Xy — 0, divXFzzszij,
j=1
for every vector field F' = (F1,..., Fy,), so that the expression .Zu reads
Lu=divy(AXu) + Yu.
Finally, when A is the m x m identity matrix, we will use the notation

m
2y:§:xg+y
k=1
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