This paper proposes a new architecture for privacy-preserving data mining based on Multi Party Computation (MPC) and secure sums. While traditional MPC approaches rely on a small number of aggregation peers replacing a centralized trusted entity, the current study puts forth a distributed solution that involves all data sources in the aggregation process, with the help of a single server for storing intermediate results. A large-scale scenario is examined and the possibility that data become inaccessible during the aggregation process is considered, a possibility that traditional schemes often neglect. Here, it is explicitly examined, as it might be provoked by intermittent network connectivity or sudden user departures. For increasing system reliability, data sources are organized in multiple sets, called rings, which independently work on the aggregation process. Two different protocol schemes are proposed and their failure probability, i.e., the probability that the data mining output cannot guarantee the desired level of accuracy, is analytically modeled. The privacy degree, the communication cost and the computational complexity that the schemes exhibit are also characterized. Finally, the new protocols are applied to some specific use cases, demonstrating their feasibility and attractiveness.
Rings for Privacy: an Architecture for Large Scale Privacy-Preserving Data Mining / Merani, M. L.; Croce, D.; Tinnirello, I.. - In: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. - ISSN 1045-9219. - 32:6(2021), pp. 1340-1352. [10.1109/TPDS.2021.3049286]
Rings for Privacy: an Architecture for Large Scale Privacy-Preserving Data Mining
Merani M. L.;
2021
Abstract
This paper proposes a new architecture for privacy-preserving data mining based on Multi Party Computation (MPC) and secure sums. While traditional MPC approaches rely on a small number of aggregation peers replacing a centralized trusted entity, the current study puts forth a distributed solution that involves all data sources in the aggregation process, with the help of a single server for storing intermediate results. A large-scale scenario is examined and the possibility that data become inaccessible during the aggregation process is considered, a possibility that traditional schemes often neglect. Here, it is explicitly examined, as it might be provoked by intermittent network connectivity or sudden user departures. For increasing system reliability, data sources are organized in multiple sets, called rings, which independently work on the aggregation process. Two different protocol schemes are proposed and their failure probability, i.e., the probability that the data mining output cannot guarantee the desired level of accuracy, is analytically modeled. The privacy degree, the communication cost and the computational complexity that the schemes exhibit are also characterized. Finally, the new protocols are applied to some specific use cases, demonstrating their feasibility and attractiveness.File | Dimensione | Formato | |
---|---|---|---|
TDPS_rev2_1102.pdf
Accesso riservato
Descrizione: Articolo principale
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
399.24 kB
Formato
Adobe PDF
|
399.24 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris