Healthcare services are strongly dependent on the availability of equipment and medicines, as shortages can lead to treatments interruptions, reduced capacity, or undesirable delays. In the last decades, centralized group purchasing organizations, coupled with an outsourced pharmaceutical logistic, have replaced traditional approaches to avoid shortages and associated negative effects. In Italy, this process started in the 1990s with a regionalization conducted by the Italian National Health Service. To make centralization strategy works, however, a good integration between warehouses and delivery infrastructure is fundamental. This means taking many decisions at all managerial levels. As these decisions are hard to be evaluated by hand, a computational tool becomes essential. In this thesis, we present algorithms and development processes used to create a decision support system for a pharmaceutical logistic company specialized in storage and distribution of pharmaceutical products in Italy. In the first chapter, the software conception and implementation are presented, including details about technology integration. In the second chapter, the transportation part of the system is presented, with a focus on the computational approach to solve two closely related problems, a rich vehicle routing problem and a truck and driver scheduling problem. In the third chapter, we present a storage allocation problem that has special constraints associated with the pharmaceutical logistic, and an Iterated Local Search (ILS) based algorithm to solve it. In conclusion, some possible system improvements and future research directions are shown. Additionally, the appendix contains two chapters that describe the results obtained in parallel researches developed by the author. The first appendix presents an Adaptative Large Neighbourhood Search heuristic combined with a Set Partitioning model to solve a multiobjective dial-a-flight problem. In this problem, a heterogeneous fleet of airplanes must be routed to carry passengers to a required destination. The objective is to minimize user inconvenience (measured by delays and intermediary stops) and costs. Each airplane has different speed, fuel consumption, capacity, and costs. The problem contains some hard-operational constraints such as airplane maximum weight (including passengers), safety, unavailability of fuel in some airports and time windows. The second appendix proposes four mathematical models and an ILS based heuristic to optimize a scheduling problem with position-dependent deterioration and maintenance activities. In this problem, a set of jobs must be scheduled on a set of parallel unrelated machines in order to minimize the makespan. Each job has an individual runtime and causes a deterioration on the machine that makes the runtimes of the next jobs rise by a cumulative factor. Maintenances, which have significant runtimes, can be scheduled between two jobs, making the machine recover its full performance. Overall, the contributions of this thesis lie in the proposal of algorithms and software to solve very complex routing and scheduling problems deriving from real-world decision problems.

I servizi sanitari dipendono fortemente dalla disponibilità di attrezzature e medicinali. Eventuali mancanze possono provocare interruzioni dei trattamenti, riduzioni di capacità, o ritardi indesiderati. Nell’ultimo decennio, group purchasing organizations, legate alla logistica farmaceutica esternalizzata, hanno sostituito gli approcci tradizionali di acquisto per evitare carenze nei servizi. In Italia, questo processo è stato iniziato negli anni 1990, con una politica di regionalizzazione condotta dal Servizio Sanitario Nazionale. Tuttavia, per fare funzionare questa strategia, è fondamentale avere una buona integrazione tra magazzini e strutture di distribuzione. Questo significa prendere varie decisioni a tutti i livelli gestionali. Siccome queste decisioni sono difficile da valutare manualmente, un supporto informatico diventa essenziale. In questa tesi, presentiamo algoritmi e processi di sviluppo usati per creare un sistema di supporto alle decisioni per un’azienda di logistica sanitaria specializzata in stoccaggio e distribuzione di prodotti farmaceutici in Italia. Nel primo capitolo, la concezione e l’implementazione del software sono presentate, assieme ai dettagli sull’integrazione della tecnologia. Nel secondo capitolo, la parte del sistema riguardante il trasporto di merce è presentata, con un focus sull’approccio computazionale per risolvere due problemi strettamente correlati, un Rich Vehicle Routing Problem e un problema di schedulazione di veicoli ed autisti. Nel terzo capitolo, è presentato un problema di allocazione di prodotti in un magazzino, con vincoli riguardanti la logistica farmaceutica, assieme a un algoritmo basato sul paradigma meta-euristico Iterated Local Search (ILS) per risolverlo. Nelle conclusioni, sono mostrate alcune possibilità di miglioramento del sistema e di future prospettive di ricerca. Inoltre, l’appendice contiene due capitoli che descrivono i risultati ottenuti in ricerche parallele svilluppate dall’autore. Nella prima appendice, è presentato un euristico di tipo Adaptative Large Neighbourhood Search combinato con un modello di Set Partitioning per risolvere un problema di dial-a-flight multi obiettivo. In questo problema, una flotta eterogenea di aerei è usata essere per portare i passeggeri alle loro destinazioni. L’obiettivo è minimizzare il disagio dei viaggiatori (misurato in ritardi e fermate intermedie) e i costi. Ogni aereo ha differenti velocità, consumo di carburanti, capacità e costi. Il problema ha alcuni vincoli operazionali stretti, come il peso massimo dell’aereo (passeggeri compresi), sicurezza, indisponibilità di carburante in alcuni aeroporti e finestre temporali. La seconda appendice propone quattro modelli matematici e un euristico basato sul paradigma ILS per ottimizzare una schedulazione con deterioramento dipendente dalla posizione dei lavori e da attività di manutenzione. In questo problema, un insieme di lavori devono essere schedulati su un insieme di macchine parallele non correlate per ottimizzare il makespan. Ogni attività ha il suo tempo di processamento e causa un deterioramento nella macchina che fa alzare il tempo di processamento delle prossime attività di un fattore cumulativo. Le manutenzioni, che hanno tempi di processamento significanti, possono essere schedulate tra due attività, facendo sì che la macchina riprenda la sua performance ottimale. Complessivamente, i contributi di questa tesi si concentrano nella proposta di algoritmi e software per risolvere complessi problemi di routing e schedulazione derivanti da problemi decisionali reali.

Sistema di supporto alle decisioni basato sulla Ricerca Operativa per problemi nella logistica farmaceutica / Nilson Felipe Matos Mendes , 2021 Apr 21. 33. ciclo, Anno Accademico 2019/2020.

Sistema di supporto alle decisioni basato sulla Ricerca Operativa per problemi nella logistica farmaceutica

MATOS MENDES, NILSON FELIPE
2021

Abstract

Healthcare services are strongly dependent on the availability of equipment and medicines, as shortages can lead to treatments interruptions, reduced capacity, or undesirable delays. In the last decades, centralized group purchasing organizations, coupled with an outsourced pharmaceutical logistic, have replaced traditional approaches to avoid shortages and associated negative effects. In Italy, this process started in the 1990s with a regionalization conducted by the Italian National Health Service. To make centralization strategy works, however, a good integration between warehouses and delivery infrastructure is fundamental. This means taking many decisions at all managerial levels. As these decisions are hard to be evaluated by hand, a computational tool becomes essential. In this thesis, we present algorithms and development processes used to create a decision support system for a pharmaceutical logistic company specialized in storage and distribution of pharmaceutical products in Italy. In the first chapter, the software conception and implementation are presented, including details about technology integration. In the second chapter, the transportation part of the system is presented, with a focus on the computational approach to solve two closely related problems, a rich vehicle routing problem and a truck and driver scheduling problem. In the third chapter, we present a storage allocation problem that has special constraints associated with the pharmaceutical logistic, and an Iterated Local Search (ILS) based algorithm to solve it. In conclusion, some possible system improvements and future research directions are shown. Additionally, the appendix contains two chapters that describe the results obtained in parallel researches developed by the author. The first appendix presents an Adaptative Large Neighbourhood Search heuristic combined with a Set Partitioning model to solve a multiobjective dial-a-flight problem. In this problem, a heterogeneous fleet of airplanes must be routed to carry passengers to a required destination. The objective is to minimize user inconvenience (measured by delays and intermediary stops) and costs. Each airplane has different speed, fuel consumption, capacity, and costs. The problem contains some hard-operational constraints such as airplane maximum weight (including passengers), safety, unavailability of fuel in some airports and time windows. The second appendix proposes four mathematical models and an ILS based heuristic to optimize a scheduling problem with position-dependent deterioration and maintenance activities. In this problem, a set of jobs must be scheduled on a set of parallel unrelated machines in order to minimize the makespan. Each job has an individual runtime and causes a deterioration on the machine that makes the runtimes of the next jobs rise by a cumulative factor. Maintenances, which have significant runtimes, can be scheduled between two jobs, making the machine recover its full performance. Overall, the contributions of this thesis lie in the proposal of algorithms and software to solve very complex routing and scheduling problems deriving from real-world decision problems.
Decision support system based on Operations Research for pharmaceutical logistic problems
21-apr-2021
IORI, MANUEL
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis-Nilson Mendes.pdf

Open access

Descrizione: Tesi definitiva - Nilson Felipe Matos Mendes
Tipologia: Tesi di dottorato
Dimensione 2.66 MB
Formato Adobe PDF
2.66 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1244339
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact