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Abstract

Healthcare services are strongly dependent on the availability of equipment and medicines,
as shortages can lead to treatments interruptions, reduced capacity, or undesirable delays. In
the last decades, centralized group purchasing organizations, coupled with an outsourced
pharmaceutical logistic, have replaced traditional approaches to avoid shortages. To make
centralization strategy works, however, a good integration between warehouses and delivery
infrastructure is fundamental. This means taking many decisions at all managerial levels. As
these decisions are hard to be evaluated by hand, a computational tool becomes essential.

In this thesis, we present a decision support system for a pharmaceutical logistic company.
In the first chapter, the software conception and implementation are presented. In the second
chapter, the transportation part of the system is presented, with a focus on the computational
approach to solve two closely related problems, a rich vehicle routing problem and a truck
and driver scheduling problem. In the third chapter, we present a storage allocation problem
that has special constraints associated with the pharmaceutical logistic, and an Iterated Local
Search (ILS) based algorithm to solve it.

Additionally, the appendix contains two chapters that describe the results obtained in
parallel researches developed by the author.

The first appendix presents an Adaptative Large Neighbourhood Search heuristic com-
bined with a Set Partitioning model to solve a multiobjective dial-a-flight problem. In this
problem, a heterogeneous fleet of airplanes must be routed to carry passengers to a destina-
tion. The objective is to minimize user inconvenience and costs. Each airplane has different
speed, fuel consumption, capacity, and costs. The problem contains some hard-operational
constraints such as airplane maximum weight, fuel unavailability in some airports and time
windows.

The second appendix proposes four mathematical models and an ILS based heuristic
to optimize a scheduling problem with position-dependent deterioration and maintenance
activities. In this problem, a set of jobs must be scheduled on a set of parallel unrelated
machines in order to minimize the makespan. Each job has an individual runtime and causes
a deterioration on the machine that makes the runtimes of the next jobs rise. Maintenances,
which have significant runtimes, can be scheduled between two jobs, making the machine
recover its full performance.

v



Chapter 1

Introduction

The access to affordable healthcare is crucial to people wellness and is mentioned as one
of the universal human rights (The United Nations, 1948). It is fundamental not only for
the individuals, but to the whole society, influencing countries economy, instruction and even
personal freedom. Without a regular and efficient access to healthcare it is not possible to
people have a fully right to life and neither a real safe environment to develop any activity.

Unfortunately, it is a challenge providing a broad and good health coverage to the pop-
ulation. The costs of equipment, structure, and professional are huge, the management is
complex hard, and the results are not easy to evaluate. Furthermore, we could cite other
problems like the unequal distribution of health budget (70 times more per capita on high
income countries than in low-income countries), lack of capillarity, overall corruption, private
political interests, widespread lobbying and poor operational planning or execution. All those
things together drain the resources and make whose that need more the service unattended.

To illustrate the scenario described above, we can start analysing the 2017 global spending
on health, that was US$ 7.8 trillion, or about 10% of GDP and US$ 1.080 per capita, but 70

times more per capita on high income countries than in low income countries (WHO, 2019).
It bring us around 5 million deaths could be avoided in 2016 (when the global spending on
health was US$ 7.6 trillion) if the patients could receive a good-quality care and 3.6 million
deaths were caused simply due to non-utilisation of health care (Kruk et al., 2018). Only in
the United State, almost 45000 deaths per year are associated to the lack of a health insurance
(Tanne, 2008), a reality of 27 million persons in the country at 2018 (Berchick et al., 2018).

As we can see, the effects of lack of healthcare access are somewhat common and known,
but they can get worse quickly. As the infrastructure of public/private health systems are
defined based on previous data, the arrival of a significant and unexpected event usually causes
more overloads on services and force them to be re-dimensioned. In emergence occasions -
like a pandemic, earthquake, hurricanes, etc… - the installed structure is often so stressed that
becomes unable to deal with all the requests. Without discussing which could be the best
method to manage a national healthcare system (public or private, insured or on demand,

1
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etc…), it is straightforward to notice that in these cases, a rational and correct strategy to
distribute and (re)allocate professionals, medicament and equipment is strongly recommended
to avoid even more catastrophic situations, like the explosion of avoidable deaths, permanent
damages, and finally the burden of all care workers involved.

A dramatic and most recent example of this situation was seen in the beginning of the
covid-19 pandemic in March of 2020, when the disease spread quickly over all the world,
mainly on Europe and North America. As the disease was still new and highly unpredictable,
one of the unique recommended methods to slow down the spread of virus was the use of
facial mask. However, most of countries governments were terrified with the mask shortage
(a fast and cheap to produce item) and with the fact that half of world production was
concentrated on China (Wu et al., 2020). To solve this problem, some heterodox measures were
taken, as mask importing bans (OEC, 2020), artisan production or even cargo confiscation
during transportation in international airports (Tarquini, 2020)(BBC, 2020). The lack of
material was so critical that some doctors were asked to reuse disposable masks, a practice
that would be never accepted in normal conditions (Pengilley, 2020) and other health workers
got infected or even died because they were not able to follow the safety procedures (Hong,
2020). Furthermore, the lack of professionals to deal with all the patients lead make some
countries, like Italy, to put medicine students to work on hospitals without taking final exams
(Coleman, 2020).

It is evident that the mask shortage described could be better solved if the mask production
was less centralised, or the global supply chain was not broken due several lockdowns or the
local authorities have a contingence plan to answer an unexpected demand of materials,
like the guidelines proposed by the American Centers for Disease Control and Prevention
(CDC, 2020). A responsive supply chain redesign could allow hospitals or pharmacies storage
rebalance and then to protect more people and probably saving lives. However, the number
of decisions that must be taken in these scenarios is incredible high and the effects of these
decisions can be worse than doing nothing. Finally, as we can see on (e.g. Caunhye et al.
2012, Galindo and Batta 2013, Acar and Kaya 2019, Özdamar and Ertem 2015 and Wang
and Chen 2020), the decisions that need be taken are strongly dependent on damage and
demand forecast.

Fortunately, huge events like the covid-19 pandemic are somewhat rare. Even in an average
emergency, it does not take more than some weeks to be solved and neither causes long crashes
in the supply network (except in case of wars). As in other kind of services, health care
services have regular demands, with seasonal variations already known by the decision takers
and authorities. The regularity of health care demand evidently helps to create strategies
to solve some local and occasional problems, but it does not guarantee however that the
service will run in an efficient or flexible way. In any case, the problem complexity remains
considerable, requiring collection and analyse of large amount of data just to figure out what
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are the problems or priorities. In the last decades, the use of information systems to execute
these tasks are becoming more frequent every day. As they can delivery forecasts and insights
hard to be delivered by skilled professionals, creating and updating these systems have a direct
impact in improving the quality of service.

In this context, artificial intelligence and operations research techniques are already con-
solidated tools to solve problems related with the management of healthcare services, as can
be seen on (e.g. Aboueljinane et al. 2013, Rais and Viana 2011, Aringhieri et al. 2017 and
Acampora et al. 2013). Among these problems we can cite: hospital personnel allocation
and scheduling (e.g. Burke et al. 2004 and Erhard et al. 2018), ambulance allocation and
dispatching (see Bélanger et al. 2019, Bélanger et al. 2012 and Zaffar et al. 2016), health care
facility location (e.g. Ahmadi-Javid et al. 2017, Güneş et al. 2019, Moeini et al. 2015, Afshari
and Peng 2014, Sharma et al. 2019 and Dogan et al. 2019), patient to staff/facilities schedule
and assignment (e.g. Ogulata et al. 2008, Condotta and Shakhlevich 2014 and Schimmelpfeng
et al. 2012), operating room planning (e.g. Zhu et al. 2019, Aringhieri et al. 2015, Zhang et al.
2009 and Dios et al. 2015), etc...

Following the mask shortage thread, previously mentioned, we can introduce another
issue that is one of most important, but usually less remembered, on health care services, the
storage and distribution of medication and personal protective equipment (PPE). While the
number of doctors, nurses, ambulances or some expensive machine are always cited when the
quality of service is evaluated, the medicines supply is commonly forgot, especially in countries
where they are not provided by the government/hospital. However, there are situations where
a nurse and a bed can be useless to a patient if there is not gauze or a tetanus vaccine available
for the first aid, or some surgery cannot be done by the lack of anaesthesia.

The poor management of medicine/PPE storage and distribution causes significant losses
to hospitals, distributors, pharmacies and finally to patients. Not only the items shortage can
be harmful, but an incorrect storage or transportation can lead to accidental poisoning, PPE
contamination, reduced therapeutic effect and finally disposal by expiration or degradation.
Medicaments disposal is particularly undesirable because it represents a waste of economic
resources that could have other destinations and thus an increase of average cost of healthcare.

There is not much data about the size of economic impact caused by unappropriated
storage on medical centres, however the available information can show how important this
to their internal budget. For example, a study conducted at hospitals in the Capital Region
of Copenhagen, Denmark, estimated savings of 1,5 million euros in one year in the region
only by correcting the storage of refrigerated drugs (Colberg et al., 2017). In another study
is presented an estimate of Trueman et al. (2010) showing that each year between £100-
£800 million worth of dispensed medicines go unused and are ultimately discarded by United
Kingdom National Health Service (NHS), which represents around 0.3% of the budget in that
time. In this case, however, the unused/discard of medicines are not only caused by tactic
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or operational management of supply, but also by problems related with the interruption of
medicament use by patients (due the cure, death or side effects).

An efficient supply chain is one of the alternatives to reduce this kind of problem. As
it is possible to reduce the time and complexity required to receive the material needed,
redistribute non used medicines and predict how the materials and medicines will be requested
during a time horizon, it is also possible to reduce the complexity of keeping these items stored
and thus, the possibility of loss due to incorrect storage practices.

In other worlds, one of the strategies to solve this problem is to make any part of the supply
chain work only (or mostly) with its speciality. A hospital should be concerned mainly with
how to take care of patients, not how to manage a warehouse. In the other hand, a distributor
should not be aware about the doctor scheduling and its influence on the demand of gloves and
masks. A doctor should not have to check if there is a medicine in some shelve in a unknown
place before prescribe it to a patient and neither the patient should not care about to take
all the pills he received only to avoid waste. These decisions are in different environments
and all a high-level healthcare manager should worry about is to keep the process working in
harmony to avoid conflicts, questionings, and shortages.

In an ideal working environment, a hospital would keep only a small storage to some
operation days and receive the material needed in only few days or hours. Those materials
would be kept in a proper larger warehouse most of time and distributed to many customers
as soon as possible.

This strategy is already adopted by public administrators in some Italian regions to keep a
fast and regular flow of medicines and PPEs to the hospitals and pharmacies they manage. It is
based in the outsourcing of storage and distribution services, in which a public administration
firms a contract with a single transportation company and make it responsible by the delivery
of products required in their installations. In this structure the company does not buys
or negotiates any product with the providers - that have already they own contract with
government - but receives, organise and stores the products, and after transport it to the
costumers when they require it.

In this operation, as it was mentioned, the hospitals and pharmacies do not need to manage
a large storage installation by themselves, because it is fast and quick to ask for a load of
materials every time they want. Furthermore, the hospital/pharmacy manager does not deal
with a poll of providers to keep its services working, do a market survey every time they need
an item or to worry about buying large amounts of products to get better prices or a quick
delivery. All these operations are done through an interface represented by the government
contracted distributor, that tries to make the task of demanding one ton of medicines as
simple as asking for a pizza, or almost it.

To the government, this approach gives the advantage of buying a large volume of products
and then getting better prices and conditions in the contracts. It allows either to take medium-
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long term decisions, that are not affected by government crisis or changes or maybe by short
sighted decisions (if we are optimistic when we think the current government can make good
decisions). The public administration also does not need to worry about how and when
those products will be delivered and how those products will be individually used by each
customer, as those decisions are decentralised and the costumers have relative autonomy to
request necessary items.

Finally, to the distribution company this layout is interesting because it allows them to
have a long and stable operation, reducing risks, cost, and complexity. It also makes possible
to create better installations to store the products (as it will be used in a long period), reducing
the eventual losses of medicines caused by incorrect or low quality storage that could exist in
costumer’s installations if they need to keep large volumes of products.

To this operation works it needs to be economically viable for all stakeholders, mainly
to the distributor, that has not an “infinite” source of money to spend and needs to have
some profit to avoid its bankruptcy. In this context, the work described in this thesis is
focused on a pharmaceutical product distributor operation, with the objective of improving
its efficiency and reduce costs. The text reports the proposal and development of an analytics
software that works as a decision support system, where combinatorial optimization methods
are the main tool used. The motivation of the project was the rising complexity involved in
the management of product storage, worker shifts, vehicle loads, delivery routes, warehouse
dimensioning, etc... that made necessary a more scientific, automatic and precise evaluation
of costs and alternatives.

All the activities and system functionalities developed were done under the company
supervision and following its guidelines and operations. The focus was to support the current
business operation, but not proposing structural changes or a new way of work, following a
philosophy of fitting the software in the company, not the company in the software.

The discussion in the text will be limited to the algorithms proposed and strategies to
recover, process and analyse the data already available. The text will not present deeper
considerations about the company operations or if they are intrinsically reasonable or not,
unless when it directly affects the way the algorithms or functionalities were developed.

Considering the situation described above we can specify the main and secondary objec-
tives of the study reported in this thesis as follows:

• Main objective Create a decision support system based on Operational Research algo-
rithms for improving the decision-making process in a pharmaceutical logistic company
and evaluate the company strategies and operation.

• Secondary objectives

- Evaluate the suitability of Operational Research algorithms to solve real logistic
problems in a controlled and automated company operation.
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- Study the relevance of keeping a consistent data flow to get best results in a ware-
house management.

- Study and report the software process implementation in the company as well the
changes in the project required after the first contact with the final users.

The structure of the text will be the following: In Chapter 2, an overall vision of the
system will be presented, showing the main functionalities, technologies used to implement
it, the data flow and storage, the deployment procedure and a small description of use. In
Chapter 3 is described the routing problem, and the strategy to solve the truck and driver
allocation problem. In Chapter 4 is presented the storage allocation module, in which we
detail the data input, the data processing to let the information ready to be used in the
algorithm, and the heuristic used to solve the problem. Finally, we present the conclusions,
with an overview of possible system improvements and directions in research.

Additionally, the appendix contains two chapters that describe the results obtained in
parallel researches developed by the author. The first appendix presents an Adaptive Large
Neighbourhood Search heuristic combined with a Set Partitioning model to solve a multi-
objective dial-a-flight problem. The second proposes a set of mathematical models and an
ILS based heuristic to optimise a scheduling problem with position-dependent deterioration
and maintenance activities.
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Chapter 2

Creating a decision support system
to a healthcare logistic operator

Developing a software for a company and inserting it in the everyday company operation
is often a hard task, because it involves understanding problems, defeating internal resistance
and changing business practices. In this chapter, we present the company operation and the
development process of the decision support system described in this thesis. The first part of
the chapter gives an overview of health care supply chain management and how our partner
company operates on it. In the second part, we present how was the software conception, but
without discussion about the algorithms used to solve the optimisation problems.

2.1 The health care supply chain management

Healthcare services are one of the most essential services in the modern society, compara-
ble only with security and food/water supply. It is composed by a pool of activities like first
aid services, psychological aid, chronic disease treatments, medicines distribution, clinical ex-
amination, disease prevention, support to pregnant, elder or disabled persons, physiotherapy,
etc... These services are useful not only to keep people alive or bring them immediate relieve,
but either to increase the well-being through the reduction of considerations about availabil-
ity and quality of the healthcare. It is also important to highlight the economic impacts of
a good healthcare system when it avoids the loss of workforce caused by premature deaths,
incapacitating diseases, temporary licenses and also the burden of relatives and professionals
dedicated in caring the patients.

The importance of healthcare to the society and economy have attracted the attention of
governments and private entities. They, concerned in keeping people healthy with a limited
budget,have increased the efforts to provide a higher quality of service and make this service
accessible to a broader public. Among the measures adopted to reach this objective, we
highlight:

11
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• Increasing the number of professionals in different areas (doctors, psychologists, nurses,
physiotherapists, paramedics, biochemists, etc...).

• Building new hospitals, pharmacies and other health facilities while keeping and recov-
ering the old ones.

• Expanding existent hospital and number of available beds.

• Health orientation to disease prevention.

• Improvement on medical equipment and medicine distribution.

The increase in number of professionals can be observed around the world. It is also
possible to notice a rise in number of hospitals and available beds, making possible to receive
more patients simultaneously inside a structure.

However, healthcare service needs more than people and physical infra structure to work
well. The service is highly dependent on availability of materials like medicines, equipment,
and office materials. As the health service providers are aware of the impossibility of pre-
dicting exactly when each item will be used, they need to keep the items stored in hospitals
and pharmacies until when they are required or discarded by medical personnel or patients.
Defining how these things will be stored, distributed, and replenished is a complex task that
requires a high knowledge about items shelf life, storage conditions, turnover rate, etc and also
a pool of professionals to allocate, retrieve and ordering items, control inventory levels and
items integrity, etc... aiming to avoid any level of shortage. These tasks create an overload
on health staff, that ideally should be concentrated on caring the patients.

Keeping material flow in a facility that provides a product or a service to the final customer
is a challenge not only to hospitals and pharmacies. Instead, most of companies that execute
activities significantly dependent on manufactured materials have similar problems. In most
of them, it is almost impossible to control the flow of the material needed, from the production
until the use, with a reasonable cost and time. Thus, to continue operating and satisfying
customer demands, the companies are constrained to insert themselves in a supply chain.

A supply chain, as defined in Aldrighetti et al. (2019) is a network of organisations and
processes wherein enterprises (suppliers, manufacturers, distributors and retailers) collaborate
to acquire raw material, convert it in intermediary products and then in final products to
finally deliver them to customers. Supply chains are part of an evolution on manufacturing
systems, once the responsibility of doing well each step is divided among several parts, that
can have a more focused and efficient operation.

While a good supply chain reduces a company operation complexity, it also requires the
ability of maintaining all the links working in a harmonic way. For instance, an industry
responsible to create final products needs to track its suppliers and have a plan to mitigate
the effects of missing or delayed deliveries. At the same time, it needs to check if their
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distributors (internal or outsourced) are always able to deliver the production to the next
link, which can be a distribution centre, a customer or even other facilities owned by the
company. The effort of coordinating all the entities in this context is called supply chain
management.

In some cases, a failure of a supplier in delivering a product does not represent a relevant
problem, due to the availability of companies that can replace it quickly and without signif-
icant losses. Unfortunately, in the medical or pharmaceutical supply chain this is not true.
Unlike consumer products, where the customer can delay a purchase or buy an alternative
product, in a health care service maybe there is not alternative treatment or time for wait-
ing a new supplier (Mustaffa and Potter, 2009). With a globally dispersed and consecutive
production/distribution steps, it is not unusual the supply chain cycle time to be 100-300
days, making hard to address expansion on the demand, as we already mentioned in the
introduction (Shah (2004) and Friemann and Schönsleben (2016)).

Due the high unpredictability of demand in short term and to lower the risks that can be
caused by an eventual break in the flow, many hospitals adopt the strategy of keeping their
inventory level close to 100% to avoid eventual shortages (Uthayakumar and Priyan (2013)
and Aldrighetti et al. (2019)). Although this strategy is efficient in avoiding problems in the
service, it increases operational costs. Estimates say that 10% to 18% of hospital net revenues
are spent only in inventory costs (Volland et al. (2017), Nicholson et al. (2004) and Jarrett
(1998)). High inventories also can lead to waste of medicines and other sensible materials,
due to problems in the storage or short shelf lives.

Another option to solve the problem is making the supply chain more robust, especially
on delivering medicines to hospitals and pharmacies at the right time and then reducing their
managerial burden in weaker nodes, the costumers. This solution requires a higher level of
management and a deep knowledge of the actors involved in the network, that most of times
have an active participation of governments, hospitals and pharmacies centralised groups.

To clarify this approach, we need first to clarify the parts of the process, as well their roles
and connections. A typical pharmaceutical supply chain will consist of a subset of the following
nodes: primary manufacturing, secondary manufacturing, market warehouses, distribution
centres, wholesalers, group purchasing organisations, retailers and hospitals (Shah (2004)
and Uthayakumar and Priyan (2013)).

Primary manufacturers process raw material and produce the medicine active ingredients,
that will be sent to the secondary manufacturers, where the ingredients will be put together
and mixed with other materials in order to create a formula and so the final product (Shah,
2004). Wholesalers and group purchasing organisations (GPO) are companies or group of
companies that buys large quantities of materials from the producers to a posterior distribu-
tion to retailers, that can be done directly or through warehouses/distribution centres. The
main difference between them is that a GPO is formed by customers looking for the advan-
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tages of buying large amounts of the same products, like lower prices, continuous supply, or
better delivery conditions. By its turn, wholesalers are individual companies that deal with
producers to get the products and after selling them to retailers in large amounts.

In this network, wholesalers and GPO have been increasing in importance as the main
actors in the process of materials acquisition in hospitals and pharmacies. This move started
when hospital and pharmacies managers observed the advantages of outsourcing part of their
logistics, specially the centralisation of requests and storage, a lower number of invoices to
process, faster deliveries and reduction on the need of huge storages on customers facilities.

This strategy, however, must be planned better than the previous, due its higher operation
complexity. It is far easier to correct minor problems in the inventory of a single hospital
than solve a problem caused by a centralised warehouse. Once all the orders are managed
by just one company, all the issues that could happen individually in each customer can
be also centred in this company. Thus, to work well, this approach needs to guarantee a
high reliability of the warehouse and distributors and a good communication between the
customers and logistic operators.

In Beaulieu et al. (2018) is presented an example of how problematic this strategy can
be in the worst case. In this study, a GPO terminated a contract with a logistic operator
approximately one year after the begin of services, mostly because of several mistakes on
deliveries and explosion of costs to the operator.

In other hand, a highly successful example of this kind of organisation can be seen in Italy,
especially in North and Northeast regions, where in the last 15 years, healthcare has been
changing from a traditional decentralised system to a modern centralised one (Aldrighetti
et al., 2019).

In Reggio Emilia, for example, there is the Area Vasta Emilia Nord (AVEN), one of three
area vasta consortia based on Emilia-Romagna today, created in 2004 to serve healthcare
customers in the Reggio Emilia province and adjacencies (Aldrighetti et al., 2019). In these
consortia, purchases are centralized and negotiated by high governmental entities, that ask
suppliers to deliver all the required products in a set of large warehouses. These warehouses
are managed by a third part logistic company that receives and delivers the orders to hospitals
and pharmacies.

Similarly, there are area vasta like structures in Lombardy, Veneto, Friuli-Venezia-Giulia
and Tuscany. In this context, our partner company entered in this market saw this new
organization of health care services as an opportunity to expand its business, by offering
logistic services during a long period to a stable and trustworthy client. Nowadays, they
are responsible for warehouses management, product storage and distribution in several area
vastas like organizations.

In the next section, we will explain in detail how the company operate in these healthcare
centralized organizations. Following, how our project was conceived and implemented inside
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the company culture.

2.2 The company operation on centralised healthcare logistic

The company operation in the context of healthcare supply chain is focused on product
storage and distribution, according with the specifications defined in a contract with govern-
ment entities and the requirements of hospitals and pharmacies in the covered zone.

An important characteristic of this operation is the isolation between the services provided
to different areas. Even when two customers are geographically close, the structure of one
region cannot be used for helping to serve another. For example, the trucks used to deliver
products to one region must be used only in that region, without occasional re-allocations.
In the same way, a product can not be picked from one regional warehouse and transported
to another, even if this move is controlled and the product is replaced posteriorly.

There are several reasons to the company proceed in this way. The first one is the contract,
in which is described that warehouses are built or rent to be used by an specific region, not
being a property of the company. We can also cite the different budgets each warehouse set
in one region have for working, the risks of eventual contamination, loss of track-ability or
undesired lot swaps and finally managerial problems caused by eventual miscommunications
about resource sharing.

Internally, the warehouse operation is more like a regular structure. When the products
arrive, they pass by an inspection phase and if the result of this inspection is positive, they
are allocated in an empty space inside their dedicated zone. These zones are defined following
the ABC class criteria and the type of product (i.e. refrigerated, flammable, toxic, controlled,
corrosive).

By its turn, product distribution is triggered by an order, sent to the warehouse by a
hospital or pharmacy served in the area. After that, a team of pharmacists validate the orders
according with the delivery capacity and items availability. Once the order is validated, it
enters in a queue of orders to be recovered in shelves and then accumulated in an expedition
point. The items are then put in boxes, following their specificities and destination, and travel
by rolls to a zone where they will be organised in pallets to be loaded in trucks.

Once the trucks are loaded, they can delivery the products directly to the clients or to
intermediary warehouses, where the pallets can be stored a single day. The delivery routes
are created respecting the vehicle characteristics, the compatibility with customer structure
to receive it and finally driver related constraints, as will be detailed in the next chapter.

2.3 Software introduction

The use of electronic computers started in the first half of 20th century and were initially
restricted to some military and scientific researches, in which long and hard mathematical
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calculus, previously executed by hand, must be done quicker. The world “computer” itself
comes from the Latin computare, that means execute calculus and the first electronic com-
puters where called computer machines, as can be seen in the name of a pioneer computing
society, the Association of Computer Machinery (ACM).

Early in the computer machinery development some persons saw as interesting the pos-
sibility of using those automatic calculators in commercial and industrial environment, even
if it was done in a limited range of activities due to the high costs of maintaining these
machines. This interest become evident and was boosted with the development of COBOL
programming language, in 1959, that become so popular that still is used in current day
softwares (even with a high effort to replace it). During the sixty years that separates the
rise of COBOL and the current days, the development of computers changed completely our
lives, creating situations that someone could describe as impossible 20 years ago. This process
was nominated with several names, as third industrial revolution, digital revolution, industry
4.0, etc…but all of them with the objective of expressing the same idea: the replacement and
empowering of human capabilities by some kind of automatic or artificial intelligence.

One of scientific areas that were highly benefited by the computer invention and improve-
ment was Operations Research. With a name that poorly describes its scope, the Operations
Research have born as a military discipline and science to study how to translate human ac-
tivities or decisions in a mathematical representation and then optimise some metric through
the choose of one (or some) of these possible decisions. With this particular way of describing
the world, Operations Research was always strongly dependent of the computation speed,
even before the popularisation of electronic devices, mainly when it used the popular method
to optimise linear problems, the simplex algorithm, that basically consist in finding several
solutions to a linear equation system using techniques of linear algebra.

As the success (or failure) of a company is strongly related with their member’s decisions,
and the manual evaluation of these decisions is often not possible, the Operations Research
arose as an important tool in commercial, industrial, and financial world. Even if the area
is not known and recognised as other fields, like Artificial Intelligence, Game Theory or
Statistics, is hard to see a large company that does not use, at least indirectly, its techniques
to get better results.

Operations Research has a central role in the project described in this thesis, once it is the
kernel of all the decision process improved by the system. As the company must respect strict
quantitative e qualitative contract requirements and still have profit, balancing the level of
service and the costs becomes fundamental. Providing an automated tool to analyse several
complex scenarios is, in this context, particularly important to get good results without
compromising a huge volume of workforce that could be used in most hard to automatise
tasks.

In the sequence of chapter is presented the software project and how it was planned, from
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the requirement analysis until the main major changes asked by the company after the first
contact with the system. Also, the development process will be described, showing the system
architecture and the justification to the design chosen.

2.4 Software conception

The project presented in this thesis started with an agreement between the UNIMORE
Department of Sciences and Methods for Engineering (DISMI) and a logistic company in
2017.

More specifically, the system project started with the company demand for a compu-
tational tool for helping to solve organisational problems related with the pharmaceutical
products distribution. These problems would be mostly related with warehouse organisation
and delivery routing, being focused on day-to-day operations and some tactical decisions.

A relevant amount of time was spent to understand the optimisation problems to be solved,
their scope and how the company would like to input the data and visualise the optimisation
output. This step was conducted with several interviews and a constant communication done
through questions and answers sent by email. The objective at this point was to create a soft-
ware requirements specification, a document in which is described what the proposed software
should do without describing how the software will do it. This document is particularly useful
to create an agreement and a common understanding between developers, project managers
and the contracting company, in a way that an formal path can be followed without surprises
(Jalote, 2012).

Defining software requirements is a well-known issue in the software engineering industry
and either on Operations Research. Although this phase is not commonly cited on Operations
Research literature, it can change completely the solving approach due to the variations on
the problem understanding it can lead. Once the software requirement specification is a very
wide topic with a rich literature, we will not discuss in detail the methods used in industry
(also in academia) to create it. Nevertheless, when it is needed, it will be reported how the
specification guided the software development and eventually how specification changes have
impacted on development flow.

Considering the optimisation problem specification, the points that needed to be eluci-
dated with the company were: (a) the metrics which should be optimised; (b) the decisions
allowed to be made (and consequently the ones that must remain unchanged); and (c) decision
limitations. These points were used to define, respectively, the problem objective function,
the decision variables, and the constraints, as well to confirm the problems were typically
mixed linear-integer problems (MILP), thus within the limits of our expertise.

It is worth to notice that a formal definition of problem decision variables, bounds and
constraints does not mean, in any sense, a definition of how the problem will be solved using
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a model, exactly, approximately or even heuristically. This is only to clarify, to both parts,
the understanding of the problem, to avoid conflicts in posterior phases of project.

Although these points look easy to understand and define in the first glance, on real
applications they represent a painful part of work. Most of times contractors are not able to
give direct answers to the questions presented or even have never thought about it. In other
situations, if they can exactly answer what they need, they are not able to provide or retrieve
the data that would be necessary to validate their assumptions or to evaluate constraints or
objectives.

An example of issue on the input specification of an optimisation software is to define
if an input represents or not a feasible scenario. This is a well-known problem, but not a
trivial one, as can be seen be seen in (Chinneck, 2007). While both commercial and open
source solvers usually can define if the input model is feasible, it is not possible to yield that
this check will be done quickly. Even when it is done quickly, many times the reason of the
infeasibility cannot be easily determined, mainly if the unique available information are the
variable and constraint sets that cause the infeasibility, like is presented in MILP-solvers.
Finally, both cases described before are based in the fact that is possible, or practical, to
represent the problem as a model (only to check the feasibility), instead of checking it using
a custom implementation.

2.4.1 Problems definition and main system functionalities

A set of four optimisation problems were fixed to be put in the software. They are shortly
described below:

• Products storage allocation: Defines how to organise the SKUs in a warehouse with
the objective of optimising the process of picking, assembly, and delivery the SKUs
required by the costumers. Starting from a set of SKUs, a set of orders and a warehouse
description, the algorithm needs to decide in which cell and level (if the cell is vertically
divided) a SKU must be stored. The objective function chosen to be minimised is
the total distance to pick all the products and bring them to the dispatch point. The
position of each SKU must be unique, as must be also unique the SKU in each position.
Some SKUs cannot be stored in some areas on the warehouse and some SKU families
need to be put in separated areas, without being close to other SKU families.

• Picking personnel scheduling and rostering: Defines when each picker will start
and stop to work during a time horizon aiming to reduce the costs without delaying the
picking process. In this case problem is also desirable to avoid high variations on the
number of workers in shot time periods, do not allow overtimes or short daily shifts.

• Vehicle and driver scheduling: Once the products are already prepared to be
dispatched (or almost prepared), the vehicles and its respective drivers must be already
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ready to depart. Thus, we need to define which vehicle will be assigned to each delivery
route as well who will drive it. The objective is to reduce the number of vehicles and
drivers necessary to deliver all the orders without delays and without disrespecting the
drivers maximum working hours. Due to operational constraints, some vehicles/drivers
cannot visit some customers and neither be assigned to routes where these customers
are visited.

• Vehicle routing: Define a set of routes to deliver all the orders in a specific time
horizon aiming to reduce the transportation cost. Given a set of vehicles, grouped by
capacity and average speed, should visit the clients, and deliver them the orders in the
day and time required (or maybe in the previous day). The number of orders delivered
by each vehicle is defined by the vehicle capacity that must be greater or equals to the
sum of orders “size”. Intermediary warehouses can be used, when are available, to store
for one day products that must be delivered in hard to reach customers.

It is not hard to see how these four problems are closely related inside the warehouse
operation. The products only arrive on time at the costumer’s facilities (hospitals and phar-
macies) if it is possible to depart early enough from the warehouse. However, it is not possible
an early departure if the products are not loaded into the truck at the schedule time. To put
all the required products into the trucks a group of pickers needs to pick all the products and
other group needs to prepare them to the expedition. The size of this group and how many
hours they need work to finish this task, the work shift of each one of them and the costs of
working during different periods of the day. Furthermore, the number of hours a given set
of pickers needs to pick all the products depends on how the products are organised in the
warehouse, and the orders that need to be processed. Finally, to define what time would be
early enough, we need to know the route the vehicle will run and how much stops it will do,
that depends on how much vehicles are available, which one can visit each customer, how
many drivers are available and how long can be their shifts.

One of the main challenges of this project is exactly this interdependence. The coverage of
its decisional chain involves different levels of management and planning, from an operational
work decided by some low-level supervisor, until strategic ones, where only high executives are
involved. These parts need to work separately but with some degree of harmony, to provide
flexibility but without breaking desirable confidentiality.

Defining the trucks and drivers that will be assigned by each route, for example, is a
typical operational decision, taken by someone that visualise how the issues that can happen
with one specific client or vehicle and has direct contact with drivers and their demands. This
person does not need to know details about previous orders, cost of vehicles or the suppliers
of each product to take a decision. In another hand, the product allocation in the warehouse
is a tactical decision, that requires a good analytical evaluation, access to sensible information
about product prices, shelf time and demands as well as a vision of the possible effects of a
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right or wrong decision, requirements that are commonly fulfilled only by managers or low
level directors. Furthermore, defining the number of vehicles, drivers, the size and location
of a warehouse, the approximate number of employees, etc…are strategic decisions that works
as inputs of other problems, but are mostly decided by top executives, responsible to guide
the company in one or other direction.

Considering all the information presented in the previous sections and paragraphs and a
high volume of sensible information that cannot be presented in this thesis, we could define
the main set of functionalities, presented below:

• Create new problem scenarios

• Load a problem scenario data from .xlsx files

• During the data load, check possible inconsistencies and exhibit a log with them to the
user

• Keep isolation between scenarios and its optimisation

• Enable the creation of empty scenarios to be fulfilled through the GUI

• Delete a scenario with its respective solution if it exists

• Start the selected scenario optimisation with one click

• Detect infeasibilities in the scenario and warn the user about them

• Allow the user to export the scenario optimisation solution

• Allow the user to export the scenario information in the same format the system loaded

• Create solution data dashboards and show them in the screen

• Duplicate scenario

• Implement big data algorithms on demand

• Create and remover new users

• Control the access to parts of software according to user type

• Divide the system in modules according to the problem

• Present, to each module, individual data load and visualisation screens

• Import in the module, as an input, the solution of another module

• Allow information edition through file import
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• Allow insertion of data through file import

The system division in modules, as can be seen, is one of the main features of the system.
As described above, each module will host the functionalities required to handle problem data
and solutions, as well interact with another module when this is useful. This division also
facilitate the insertion of new problems in the system in the future without impact in the
handling of legacy models.

Another important concept used to define the functionalities is scenario. A scenario
represents a problem instance, as well its detected inconsistencies and solutions. The data
of a scenario is most of times independent of any data of others scenarios, so all editions,
insertions and deletions made in one scenario will be not mirrored in others. Once the
scenario data is loaded in the system, it remains on it until be actively deleted by the user, in
this way, it is possible to track all the already loaded and optimised scenarios quickly, what
enables comparisons and simulations almost automatically.

Details about how these functionalities were implemented, the problems found, and the
solutions obtained will be described in the sequence of the text.

2.5 System architecture and implementation

The proposed system was conceived to be a web application running in a Microsoft Win-
dows Server. We decided to create a web application due the advantage of enabling the user
to access the system remotely in most of computers without concerns about installation, set-
ting or compatibility issues. This also reduces the stress of keeping the system working each
user machine individually, reducing maintenance and user support. The main disadvantages
are related with handling concurrent accesses, security issues and the cost of keeping a server.
However, as the number of concurrent users will be low and the company provided a structure
to isolate the system operation, most of the possible problems are basically mitigated.

Before explaining how the system is implemented, we will present some software engineer-
ing concepts and their relevance on software development and functioning. These concepts
are basically related with the organisation of responsibilities and functionalities inside the
code (or system architecture) and are well known in development community, thus they will
be not explained in deep details in this text.

A modern web application is commonly divided in two parts, the front-end and the back
end. The front-end corresponds to the rendering, input and output processes that run di-
rectly on the browser, without accessing any remote machine, database, or file systems. The
back end corresponds to processes that run in a remote machine or set of machines, called
indistinctly “server”, that has a high computational power and access to databases, files, and
other resources the user cannot access directly or keep in its all computer. In short, the
first is responsible to computer-user interaction and information visualisation in the client
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computer, the second is responsible by managing data storage, request and recovering, heavy
data processing, data flow and security.

Inside the back/front end organisation is possible to create many software architectures,
depending on factors like scalability, security, data volume, quantity of parallel users, in-
terface complexity, integration with other software, etc. For example, thanks to the user’s
higher computational power, new web browser JavaScript motors, improvements on HTML,
CSS and JavaScript languages, and the grow of web development libraries, it is possible to
create complex web applications that run almost entirely on user computers, without any
special plugin or software (like Adobe Flash), including games, compilers and complex text
editors. By its turn, with the fall of hardware costs, expansion of the Internet network and
improvements on parallel processing and redundancy, it is also possible to run very heavy
applications on personal computers or mobile phones, like statistical analysis, a web search,
simulations or data analysis, etc… without concerns about the user hardware and keeping a
nice and easy to use interface.

In both cases described the back- and front-end separation remains. However, in the first
case almost all tasks performed by the front end, while in the second, most tasks are executed
by the back end. In specific cases, some of the functionalities can be even provided by another
applications, called web services, that work like independent and callable parts of the system,
kept by other development team or company.

One of the most popular software architecture patterns to implement a back/front end
organisation, and our choice in the project, is the Model-View-Controller (or MVC). In this
pattern the software code is basically divided in three: the model, representing the data
managed in the system, as well the logic to communicate with database, thus to create, read,
update or delete data (i.e. CRUD operations); the view, that renders the information and
layout in the screen; and the controller, that manages the actions in the system and connects
models with views (Aniche et al. (2018), Leff and Rayfield (2001) and Freeman (2015)). The
main advantage of this pattern is the possibility of creating several different visualisations
based on the same data, without dependence of how this data is represented or recovered in
the database, once the controller will take care of interpreting the different kinds of requests
and deliver what the interface needs to work.

But while MVC pattern is already supported and implemented in relevant web devel-
opment frameworks, like CodeIgniter (http://codeigniter.com/), ASP.NET (https://
dotnet.microsoft.com/apps/aspnet ), Django (https://www.djangoproject.com/), Ruby
on Rails (https://rubyonrails.org/) and Struts (https://struts.apache.org/) , being
a consolidated way of building web applications, it does not fit perfectly on back and front
separation. This is due the difficulties found in defining in which side (client or server) con-
trollers and models will be allocated, once the view is obviously defined in the client computer
(Leff and Rayfield, 2001).

http://codeigniter.com/
https://dotnet.microsoft.com/apps/aspnet
https://dotnet.microsoft.com/apps/aspnet
https://www.djangoproject.com/
https://rubyonrails.org/
https://struts.apache.org/
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In our project, part of these decisions had unequivocal answers. As the optimisation
algorithms require big amounts of computational resources, all the code related with them
were allocated on server. Following this same idea, no scenario validation or feasibility test
was designed to run in the user machine. All the model part, as the data should be shared
among the users, was allocated also on server. Events listening and handling, in other hand,
were put all as a JavaScript responsibility on the user browser, except when those events were
clicks in links or very general buttons, like delete or edit.

To put all these things peacefully together a pool of technologies was used. On the base of
the application we used the ASP.NET Core framework (https://docs.microsoft.com/en-
us/aspnet/core/) , an allegedly cross-platform version of ASP.NET framework, already
mentioned. However, to avoid any kind of portability issues, we decided to develop the
system all to Windows Server operational system, using the standard C# language.

Over the ASP.NET Core, we use Bootstrap (https://getbootstrap.com/) and Vue.js
(https://vuejs.org/) libraries. The first uses a set of standard CSS classes to create respon-
sive web pages in an easy way. The second provides the possibility of creating interactive
and standardized behaviours on page to simplify input management, aggregation between
different parts of page, partial reloads, etc…, being the first layer to create the interface func-
tionalities. Moreover, to compose the dashboards were the libraries Google Charts (https://
developers.google.com/chart) and D3.js (https://d3js.org/), as well the Google Maps
JavaScript API (https://developers.google.com/maps/documentation/javascript) to
draw maps and point relevant information on it.

The data input and output are performed using Microsoft Excel files, due to the high
level of familiarity of users with this software and its intuitive way of structuring data. As the
information in Excel files are not in plain text format or any easy to convert binary format, to
read or write files we use the .NET library NPOI (https://github.com/dotnetcore/NPOI).
The reading/writing processes are performed in the server and does not require the user any
Microsoft Office installation in both user and server machine. It worth to notice that it is
possible to insert information manually, but as the system require large amounts of data in
each scenario, it is not recommended input all scenario data using this method.

The data storage, by its turn, is done using Microsoft SQL Server Express, the free version
of the Database Management System (DBMS). While it has not all the functionalities and
the same performance of the paid version, it is fast and robust enough to support our system
in its initial usage.

To access and manage the data in the database we used the Entity Framework object-
database mapper (https://docs.microsoft.com/en-us/ef/), that enables LINQ queries,
change tracks, update and schema migrations, and works in other databases, like PostgreSQL,
MySQL and Azure Cosmos DB. This framework also supports the coding-first approach,
where the data definition is used as source to create a relational database, instead of adapting

https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://getbootstrap.com/
https://vuejs.org/
https://developers.google.com/chart
https://developers.google.com/chart
https://d3js.org/
https://developers.google.com/maps/documentation/javascript
https://github.com/dotnetcore/NPOI
https://docs.microsoft.com/en-us/ef/
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to a previously created database.
Regarding the optimization algorithm’s codes, the unique external and specific library

used was JuMP (Dunning et al., 2017). This library implements a domain-specific modelling
language for mathematic optimization embedded in Julia programming language, being espe-
cially useful to implement solver independent mathematical models, due to the interfaces pro-
vided by the MathOptInterface package (https://github.com/jump-dev/MathOptInterface.
jl), an optimisation library also available for Julia.

2.5.1 Interface and data flow

As mentioned before, the system was developed as a web application, to provide a greater
portability and lower user hardware requirements. More specifically, the interface was im-
plemented using the libraries Bootstrap and Vue.js over a backend created with .NET Core
framework. In this section, we make a short presentation of this interface and how the data
flows on it, using as example the Routing and Business Intelligence modules.

The main objective of the interface was providing an easy and quick access to the main
system functionalities, as data load and visualisation, solver call, solution visualisation and
data export, as well allow an agile alternation between the modules.

As can be seen in the Figure 2.1, in the system main screen we have, in the left navigation
bar, the list of optimisation modules, a link to the Business Intelligence Module, a link to
special tools. In the centre, there are three shortcuts to access important or recently modified
data. On the top navigation bar there are some information links and account control.

Figure 2.1: System main screen

It is important to notice that some modules are referred by a short name for aesthetic rea-
sons. In this way, the picker scheduling and rostering module is refered by the link Rostering
and the truck and driver scheduling is referred as Engagement.

Once the user click in one module link the system shows a submenu, in which is possible
to access the import data screen, the input data screen or the solution screen. In the Business
Intelligence link it is showed the list of analysis available (that will be not discussed in this
thesis because its is not relevant to the main subject).

In the Figure 2.2 we can see the import data screen of the module Routing. As in the

https://github.com/jump-dev/MathOptInterface.jl
https://github.com/jump-dev/MathOptInterface.jl
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other modules, it shows a list of available scenarios. When one of them is selected, the inferior
box is showed and then is possible to chose the files that will be used to load the data.

Figure 2.2: Data import screen

As can be seen, in this screen is also possible to create new scenarios, export scenario
data or duplicate a scenario. This last function is particularly useful to compare different
variations of a same master scenario (changing the number of available vehicles or some time
windows, for example) without having to reload all the files.

The data loaded in the system can be seen in a view like the presented in the Figure
2.3. As in the import data screen, there is a table with the scenarios, and once a scenario
is selected, its data is showed to the user. As the number of tables can be large and makes
the visualisation of some information difficult, it is possible to collapse the exhibition of some
tables to let others more evident. From this screen is also possible to edit scenario data and
call the optimisation.

Figure 2.3: Routing dashboard tables

In the same screen described in the previous paragraph is possible to alternate to a chart
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view, in which is possible to have an overview of scenario data directed to users interested in
having the main information about the input (as managers or directors) without controlling
or editing smaller details, like a vehicle capacity or the size of a demand. An example of this
view is presented in the Figure 2.4, where there are three small charts of the Routing module.

Figure 2.4: Routing dashboard charts

One information that can be quickly obtained in observing the charts of Figure 2.4, for
example, is the low availability of the clients at afternoon or night. It is also possible to notice
that are not demands to be satisfied on weekend and the different capacities of each vehicle
type.

Other than having insights about the input data, these charts permits to control some
constraints of the problem without having to manage directly the data tables or proceeding
complex calculations by hand or using an auxiliary software.

When the user finishes the data analyse or edition (when this is done), the optimisation
can be called through a simple button click. The optimisation process, from this point, is
totally independent of user action, and cannot be interrupted, cancelled, or restarted due to
security reasons. It is not required to the user set any further parameter, like solver path,
port, or number of threads, once it is fully managed by the application.

The optimisation process start with the writing of an input file, where the information
loaded by the user and stored in the data base will be passed in a convenient format, easier
to be read by the solver but less friendly than a worksheet. After that, the solver process is
called and receive the input file as a parameter. While the solver optimise the scenario, some
logs can be generated, but they are not presented to the user, first to reduce the data traffic
and second because it most of time does not provide any clue about when the optimisation
will finish, that is the most relevant information to the user. However, in solver code, there
are some mechanisms to stop the optimisation after very long-time executions or eventual
errors. In this case, this information is presented in the interface to inform the problem.

If the solver process finishes successfully, a file with the solution is generated and then
loaded in the database. The scenario then is set as optimised, what warns the user about
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the end of the optimisation (if the application was closed in the meantime) and permits the
optimisation report to be showed.

The optimisation report, as the input, can be seen in tables or charts. In Figure 2.5 it is
possible to see the report of the Routing module, where is possible to visualise the generated
routes in a map, the total distance and the number of clients visited, etc…

Figure 2.5: Routing solution overview

Similarly, in the chart view (vide Figure 2.6), some statistics about the solution can be
viewed, like the total distance travelled, the distance by route and the utilisation of vehicle
capacity in each route.

Figure 2.6: Routing solution charts

A human-friendly written optimisation report, without the charts, can be exported to
spreadsheet files with a single click. This report is destinated to the personnel responsible
to execute the resulting plan and to be distributed, analysed, or consulted without directly
accessing the system. It can also allow the information to be reloaded in a third part software
if it is interesting to the company.

As data visualisation represented a relevant concern in the software, it was not restricted
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only to the optimisation modules or to represent complex data sets. In the Business Intelli-
gence module this resource was utilised in a deeper way, with more complex chart layouts.
In the ABC Analysis report, for example, we implemented a tree map chart to represent the
accumulated number of requests in each class (vide Figure 2.7), as well the number of requests
of each product, as can be seen on Figure 2.8.

Figure 2.7: ABC analysis report (chart visualisation)

In the Figure 2.8 bellow, the products that are in A class (i.e. those more required in
the warehouse) are individualised as a detail of the “item A” in the Figure 2.7. The number
of details levels is not limited, so we could use this chart also to represent the prevalence of
requests in each pavilion or shelf of a warehouse, producing a quick to navigate visualisation
of the orders.

Figure 2.8: ABC analysis report (chart visualisation detailed)

Still in the context of orders statistics visualisation, we implemented a chord dependence
diagram to represent the products that are most frequently required in the same order, as a
part of the Basket Analysis report (vide Figure 9). In this chart, wider arcs represent stronger
connections, while thinner represent weaker. The colours, by its turn, indicates which product
has more requests in the connection.

Complex charts like these, more than just an aesthetic resource, are useful to highlight
information that is not easily visible in a data table or in regular charts, like a histogram or
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a pie chart. We aimed with these advanced tools to provide features that could allow the
company understand better how itself works and in this way evaluate better its current state
and the effects of its decisions.

Figure 2.9: Basket analysis correlation chart

2.6 Conclusion

In this chapter we presented a general view of the company context and operation inside
a healthcare supply chain and how the software was conceived and implemented to solve
operational, tactical, and strategic problems related with the warehouse operation.

The system was surprisingly well received in the company, considering the fact it was
not developed in a regular software house and its level of complexity. Some problem with
the usability and performance were reported, mainly regarding large run times, input errors
report and infeasible solutions. These problems were partially solved, enabling the system to
be used in the day-to-day operations.

As future research, the objective is to improve the system reliability and robustness, to
full accomplish the objective of using the system in all managerial levels without support
of a specialist team. Other aspect is to provide functionalities in the dashboards to allow
personalised reports, that could be saved or exported with a few clicks.

Finally, considering the algorithms, one desired new functionality would be the control of
heuristic and model parameters, to provide more flexibility to the decision taker to prioritise
some metrics or get quick solutions to the problems.
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Chapter 3

The Multi-Trip Rich Vehicle
Routing Problem with Truck and
Driver Scheduling

1

In this chapter, we present two modules of the decision support system which deal with
a Multi-Trip VRP characterized by additional constraints and Truck and Driver Scheduling.
The problem is solved in the software with a two-phase algorithm: the first phase consists
of an Iterated Local Search metaheuristic that defines the vehicle routes, whereas the second
phase invokes a mathematical model to assign trucks and drivers to the routes. The software
allows, between the two phases, changes in the solution to better fit the company requirements.
Computational results prove the effectiveness of the proposed method.

3.1 Introduction

Vehicle Routing Problems (VRP) are a traditional and well studied topic in Operations Re-
search and Management Science. The process of defining efficient and convenient routes is
one of the main concerns for a large number of companies, and it can lead to significant
losses when it is not performed accurately. In such field, developing a good Decision Support
System (DSS), capable of satisfying all requirements and covering all relevant characteristics
of the real problem at hand, is not an easy task. Despite the vast literature dealing with dif-
ferent VRP types, finding a variant that exactly describes the operations of a company is also
difficult. Most of the times, even state-of-the-art algorithms are not satisfactory in delivering
good real routes, due to unrealistic assumptions, lack of information, too optimistic or de-

1The results of this chapter appears in: NFM. Mendes and M. Iori, A Decision Support System for a
Multi-trip Vehicle Routing Problem with Trucks and Drivers Scheduling, 22nd International Conference on
Enterprise Information Systems (ICEIS), 1(2020), pp. 339-349, 2020. (Mendes and Iori., 2020).
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terministic approaches or simply because they are not flexible enough to provide alternatives
when the best solution is not approved by the decision maker. Conscious of this situation,
companies are always looking for alternatives that could give them a better (or more robust)
approximation, of even hiring professionals or software houses to developed custom softwares
that exactly fit their needs.

In this chapter, we describe a branch of a DSS that we are developing for an Italian
company specialized in the storage and distribution of pharmaceutical products. This branch
provides a routing plan and a driver scheduling and assignment for each route. Furthermore,
it provides a set of quantitative reports that allow one to better analyze the quality and
fitness of the solution obtained. The problem we solve is a Rich Multi-Trip VRP with Driver
and Vehicle Scheduling, where the term “rich” implies that the problem contains a number of
additional constraints with respect to the basic VRP. The problem derives indeed from the
union of a VRP with Time Windows (VRPTW), see, e.g., (Solomon, 1984), and a Multi-Trip
Vehicle Routing and Scheduling Problem (MTVRSP), see, e.g., (Brandao and Mercer, 1997),
but also includes additional constraints defined by the distribution company. In short, the
aim is to create a minimum-cost one-week routing plan to deliver products to a set of clients
by using a heterogeneous fleet of vehicles based at a central depot, while satisfying clients
service time windows, vehicle and drivers incompatibilities, driving regulation, and presence
of intermediate depots.

The contributions of this work are multiple: we clearly describe an optimization problem
derived from a real-world distribution activity; we solve the problem by means of a two-phase
algorithm; we present a software architecture that allows for an intuitive and quick man-in-
the-middle approach to make the algorithm fully usable within a DSS; we present a large
computational evaluation on a set of realistic instances; and we discuss how the approach can
be replicated to solve other difficult VRP with operational constraints.

The remainder of the chapter is organized as follows. In Section 3.2, a short review of
the related literature is provided. In Section 4.3, a formal description of the problem and the
company vision of it are given. Next, in Section 3.4, we describe how the system works and
how the user participates to the solution process. In Section 3.5, we describe the solution
approach and then, in Section 3.6, we computationally evaluate it on a case study.

3.2 Literature review

As aforementioned, the problem that we study in this chapter is a union of a VRPTW, see,
e.g., Solomon (1984), and a MTVRSP, see, e.g., Brandao and Mercer (1997). The VRPTW
has a broad and well-studied literature, and it is included in many MTVRSP problems.
Consequently, we focus our short review on the MTVRSP literature. We refer the reader
interested in VRPTW and other VRP variants to the books by Golden et al. (2008) and Toth
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and Vigo (2014).
Despite the fact that they well model scenarios where short routes are common or desirable,

MTVRSP are relatively new in the literature. While the traditional VRP was introduced sixty
years ago by Dantzig and Ramser (1959), the multi-trip version appeared only thirty years
after with Fleischmann (1990). In such article, the term used was not even“multi-trip”, but
“VRP with multiple vehicle uses”. Other well known characteristics were also studied in that
article, like time windows and heterogeneous fleet. The number of vehicles was also limited,
making the use of the same vehicle several times more desirable.

Six years later Taillard et al. (1996) proposed a three phase heuristic for the problem
that started by generating a pool of reasonable routes (first phase) from which a subset was
selected (second phase) and then assigned to feasible workdays according to a bin packing-like
procedure (third phase).

The first explicit mention to the term “truck drivers” as a part of the problem name
occurred, to the best of our knowledge, in Brandao and Mercer (1997). Such paper considered
the driver maximum working hours in a day as well the needed breaks during a route. Other
features, like unloading time, vehicle incompatibilities with some clients and the possibility
to hire additional vehicles if the available ones were not enough, were also taken into account.
To solve the resulting problem, they proposed a tabu search heuristic. They found good
results for instances with approximately 20 vehicles, divided into two types, and 70 clients.
The work was then pursued by the same authors in Brandão and Mercer (1998), where they
discussed a simplified version of an algorithm used in a real-world application, and they
reported reductions of about 5% on the delivery costs.

Campbell and Savelsbergh (2004) proposed an efficient insertion heuristic to the basic
Vehicle Routing and Scheduling Problem (VRSP), a MTVRSP without multi-trips, hav-
ing polynomial complexity. Zäpfel and Bögl (2008) presented a heuristic method to solve
an MTVRSP with possibility of drivers outsourcing. Cattaruzza et al. (2014a) proposed a
memetic algorithm and an adaptation of the split procedure, see, e.g., Duhamel et al. (2011),
to segment a chromosome into a MTVRP solutions. Azi et al. (2014) used an Adaptive Large
Neighborhood Search (ALNS) algorithm to solve a variant of the MTVRSP problem where
visits to some clients could be avoided.

Just a few papers in the literature developed exact methods to solve the MTVRSP. The
first was Azi et al. (2010), that made use of a column generation approach embedded with
a branch-and-cut algorithm. A similar approach was also employed by Macedo et al. (2011).
A more robust method was provided by Mingozzi et al. (2013), where the authors presented
two set-partitioning formulations for the problem, one having a binary variable for each route
and the other a binary variable for each schedule. Their solution procedure used bounding
methods to reduced the original set of routes and schedules. Hernandez et al. (2016) also
used a similar strategy, but with less refinements in the space solution. In Tang et al. (2015),
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a pickup and delivery problem inside an airport was modeled as a trip-chain-oriented set-
partitioning, and then solved directly using CPLEX.

In 2006, a new regulation about truck drivers was created in Europe, aiming at giving
better job conditions to the workers and rising the safety on the transportation activity.
The EC Nº 561/2001 defined a large set of rules about drivers work regime like maximum
duration of daily shifts, mandatory breaks, overtimes, minimum rest time between two shifts
and weekly rests. Among the new rules we can highlight the minimum rest of 45 minutes after
4.5 hours of uninterrupted activity (that can be replaced by a 15 minutes break after a 30
minutes break within the 4.5 hours), daily driving time of nine hours (that can be extended
to 10 hours two times per week), at least 11 hours of daily rest and a maximum of 56 hours of
weekly driving time. This regulation entered in force in April 2007, and right after that digital
tacographs became mandatory in the European Union, allowing the authorities to check, a
posteriori, the drivers working times. This new scenario motivated several studies where the
driver was individually considered.

The first study considering these new constraints was presented, to the best of our knowl-
edge, by Goel (2009). In this paper, a Large Neighborhood Search (LNS) is used to create
a weekly schedule where all the rest and break rules are respected. To reduce the explored
solution space, the authors did not considered overtimes and the 15 minutes more 30 minutes
break possibility.

Kok et al. (2010), on the other hand, was the first to consider all the rules presented
in the EC Nº 561/2001 regulation and in the Directive 2002/15/EC. To solve an MTVRP
incorporating such features, they proposed a restricted dynamic programing framework where
clients were sequentially added to the end of partial vehicle routes. Feasibility of such additions
was controlled by extra state dimensions.

A few years later, Drexl et al. (2013) proposed a two-stage method to solve a MTVRSP
with the presence of relay stations where the drivers are allowed to change a vehicle. The
first stage consists in solving a pickup-and-delivery problem, see, e.g., Battarra et al. (2014)
and Doerner and Salazar-González (2014) with time windows and relay stations, whereas the
second consists in soling a VRPTW with multiple depots.

Two papers deal with a multi-commodity MTVRSP variant where some commodities
cannot be transported together. The former is by Battarra et al. (2009), who introduce the
problem and proposes an adaptive guidance heuristic to solve it, whereas the latter is by
Cattaruzza et al. (2014b), who describe an ILS heuristic.

Vehicle routing and scheduling problems are studied in the context of home healthcare
planning by Algethami et al. (2017), that compares some operators in a genetic algorithm.
In the same path Algethami et al. (2019) proposes an adaptive multiple crossover to the
problem.

Some most recent studies in the MTVRSP area are those by Masmoudi et al. (2016) and
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Benkebir et al. (2019). The former tests a set of metaheuristics to solve a multi-trip dial-a-ride
problem, and the second proposes a hybrid method composed by a genetic algorithm and a
local search for the MTVRSP. Others relevant study are He and Li (2019), where is described
a two-echelon multi-trip VRP in a context of crop harvesting and Babaee Tirkolaee et al.
(2019) that describes a case study of a multi-trip VRP applied to an urban waste collection.
Further information about the MTVRSP can be found in Cattaruzza et al. (2016). We also
refer to Lahyani et al. (2015) as a recent review of the literature on rich VRP.

3.3 Problem description

The Multi-Trip Rich Vehicle Routing Problem with Truck and Driver Scheduling, henceforth
refereed to as MTRVRPTDS, describes a one-week products delivery operation. In this prob-
lem, trucks and drivers are individually assigned to each route, considering driver regulation
and operational constraints. The routes are created trying to minimize the distances, and
must respect the client time windows. Deliveries can be anticipated (changing from the re-
quired day to the previous day) if it is allowed by the client and useful to improve the costs
of the overall plan.

Formally, let D be a set of days in a week, F a set of storage facilities, C a set of clients,
T a set of trucks and W a set of drivers. Each client c ∈ C has a demand of Ocd pallets,
on day d ∈ D, that must be delivered inside a time window [αc, βc]. A service time of Scd
minutes is required to unload the delivery to client c in day d, independently of the truck
internal organization of the cargo. Each vehicle t ∈ T is driven by a unique driver w ∈ W .
Vehicles are grouped in types, on the basis of their speed Vt and capacity Qt. Drivers have
different contracts and skills. They are allowed to work at most h hours by day, at most H∗

w

hours per week, and they may drive only a subset Tw ⊆ T of the available vehicles, for each
w ∈W .

A unique depot is given. This is due to the fact that the company centralizes all the
deliveries of a region to that depot. The depot is supplied of pharmaceutical products by a
regional entity, and it is expected that all the products are available in the moment in which
they are required by the clients. Each route departs from the unique depot, passes through
a subset of clients, and then returns to the depot. An agreement between drivers and the
company limits the maximum duration of a route in 8 hours, less than the maximum daily
shift allowed by the ECD 56/2006 which is 9 hours. It is also imposed that the total weekly
working time cannot exceed 40 hours, and that the daily working extra time is limited to at
most 20% of the maximum daily shift.

Some vehicles cannot be sent to visit some clients (because they are too big for the road
or they do not have enough power to climb a hill). This is taken into account by considering
a set Rt of clients that can be reached by vehicle t ∈ T .
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Each vehicle and driver can be assigned to more than one route per day. This is possible
if the next route starting time is after the first route ending time plus the time required to
reload the truck or the driver have a break.

Additionally to the main depots there are, in some regions, intermediate warehouses that
can be supplied by exclusive routes coming from the main depots. Those intermediate ware-
houses receive loads that will be delivered in the next day to the clients, working like a buffer.
The use of an intermediate warehouse has a cost If , with f ∈ F being an intermediate
warehouse and F being the set of all intermediate warehouses.

A missing point about driver regulation that is not included in the problem definition
concerns the mandatory breaks that drivers should do during the day and the rests between
the days. They were not considered in the software specification, because they were considered
too operational and quite unpredictable. As reported by one of the employees, as delays or
changes in the routes can happen, it could be hard to stop at the moment defined by the
specific sequence provided by the DSS, because the driver could be in a non-safe place. Beside
this, it could trigger some drivers resistance due to the fact that some of them have already
their preferences on where to stop in each place they use to visit. In any case, we discuss how
these constraints could be included in our approach below. Regarding the rest between days,
no route should start before 5 AM. If a driver arrives late at night, the responsible manager
would change the scheduling to avoid this driver to pick a too early route in the next day.
This type of on-the-fly changes are usual when using DSS to solve optimization problems.

3.4 Software data flow

The usability is a very important feature considered by us to develop this software. It is
commonly pointed out as one of the main factors for the success of a software in a company.
A poor usability can make a DSS with advanced algorithms and analytic tools unused due to
the resistance of the decision makers to learn and deal with the system complexity.

To ensure that our DSS is used by the company, we decided to create a friendly web
interface to deal with the process of loading, visualizing and control of optimization inputs.
More than only providing an easy-to-learn tool to run an algorithm, this interface was thought
to allow the decision maker to be part of the solving process and have a clear overview of
solution quality. The application described in this chapter is a part inside a larger software
belonging to the same project. This module is divided into two parts, following the strategy
proposed by us to solve the problem.

The flow starts with the rich VRP input load. This input consists in three files, one
describing the clients, with all the information about time windows, demands, service times
and vehicle restrictions; the second describing the type of vehicles available with its respec-
tive average speeds, capacity and number of units available, and finally the third with the



3.4. Software data flow 38

parameters.
The distances between the clients can be informed by the user in the client file or evaluated

in the system using the LibOSM (https://github.com/Marcussacapuces91/LibOsm/) that
is part of the Open Street Maps ecosystem and Lemon (https://lemon.cs.elte.hu/trac/
lemon), from COIN-OR. These libraries together make possible to calculate real road distance
between any pair of points that corresponds a valid address in a given region using only a
local geo-spatial database. In this way, it is possible to get all the information needed without
the use of Internet or accessing external web services.

After all the data are loaded (or calculated, if we consider distances), the user can start the
optimization with a click. To solve this part of the problem we invoke a heuristic algorithm
that takes approximately 1 to 3 minutes to converge with instances involving around 200
clients. Such heuristic is described in detail in Kramer et al. (2019), and is sketched below
in the next section. The results obtained are a set of product transfers from a depot to an
intermediate warehouse and a set of delivery routes departing from the main depot. Each
route or transfer has a departure time and receives a vehicle type assigned to it, but not
information about the driver.

Before proceeding to the next step, the decision maker can adjust the solution obtained
by changing the departure time, the vehicle type assigned, the clients in the route and the
visit order. After each change, a solution automatic validation is performed. If a change leads
to an infeasible solution, a rollback procedure is done and the user is informed with a pop-up.

To plan an individual driver and truck to each route the user can proceed in two ways.
The first way is to load route information using Excel files like in the previous phase. This
method is useful when some other persons or systems created the routes, so it is possible to
get some improvement by better using the resources available. The second way is to load
the first phase solution as input to the second part, and this can be done with just one click.
Next, the user just needs to insert the information about the drivers and the details about
each vehicle.

The driver and truck assignment is calculated by solving a mathematical model using
a Mixed Integer Linear Programming (MILP) solver. As in the first phase, changes in the
solution provided by the system are allowed and checked, as already described. Once all these
steps are finished, the solution remains stored in the software database and can be visualized
in a dashboard or downloaded in an Excel file.

A last important point to highlight is the tolerance of the DSS with respect to infeasible
solutions. In real problems, not satisfying all constraints is common. However, it is not
interesting for a decision maker to simply have no answer after it called a solver. Considering
this, we show any solution obtained at the end of optimization, treating the typical sources
of infeasibility as penalizations in the objective functions, but warning the user about that.
A typical situation of this type occurs when not enough trucks or drivers are available for the

https://github.com/Marcussacapuces91/LibOsm/
https://lemon.cs.elte.hu/trac/lemon
https://lemon.cs.elte.hu/trac/lemon
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daily deliveries. In this case, the model incurs in a penalty, the solution is however returned,
and the decision maker knows which routes can be directly performed by the company and
which ones should be postponed to the next day or given to a third-party logistic operator.
The tolerance with infeasible solution is not extended to infeasibilities inserted by the user
through solution edition. As aforementioned, no valid modifications are undone to avoid
deteriorate a feasible or almost feasible solution.

3.5 Solution Approach

To solve the MTRVRPTDS, we use a two-phase approach. In the first phase, we use
the Multi-Start Iterated Local Search (MS-ILS) metaheuristic developed by Kramer et al.
(2019). This MS-ILS was originally developed to solve the same VRP we face in this chapter,
but without considering multiple-trips neither the presence of a limited umber of trucks and
drivers. We thus modified this algorithm in the way described below in Section 3.5.1 to fit
with the new characteristics. In the second phase, the routes created in the previous phase are
given in input to a new mathematical model, described in Section 3.5.2, that assigns drivers
and trucks to the routes and defines the effective departing time of each route.

3.5.1 Multi-start ILS Heuristic

The subproblem solved in the first phase of the MTRVRPTDS defines a set of delivery
routes and product transfers from main depots to intermediate warehouses. In this phase,
trucks and drivers are not individualized, but we just define how many vehicles of each
capacity and average speed are used. The deliveries must be done by satisfying the client
time windows and some of them can be anticipated to the previous day at the expenses of
opening an auxiliary depot. To solve this problem, we used an adapted version of the MS-ILS
by Kramer et al. (2019), where a penalty is added in the cost function whenever the number
of vehicles of a certain type used is greater than the number of available vehicles.

The algorithm can be briefly described as follows. At each iteration, a constructive method
creates an initial route connecting the depot to a hospital (that are the clients with larger
demands in our instances) and associate the largest allowed vehicle to the route. After this
is done for all the hospitals, the remaining clients are inserted in the routes created following
a lowest-cost-increase criterion. Time windows violations are accepted, but penalized.

After creating the initial solution, the algorithm starts the ILS loop. In this loop, a
Randomized Variable Neighrborhood Descent (RVND) algorithm is used as local search pro-
cedure. The RVND selects, at each iteration, an inter-route neighborhood (from a list of
four) and executes it. If the solution is not improved, then the neighborhood is removed
from the list and the algorithm tries another one. Otherwise, the list is reinitialized and
the algorithm tries to improve the current solution using one of three possible intra-route
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neighborhoods. When the list of available inter-routes neighborhood becomes empty (i.e.,
after four not improvement iterations) the method stops. After the local search has been
performed, a perturbation phase is invoked. In this step, a local search is chosen randomly
(from a list of three) to randomly modify the solution. The ILS method is iterated until a
given number of iterations without improvements is reached (in our settings, 20 iterations).
The multi-start executes the ILS 20 times.

3.5.2 Mathematical Model

The subproblem solved in the second phase of the MTRVRPTDS defines which truck
and driver must execute a route and defines the departure and arrival times at each client,
considering the truck average speed, the service start time and the time windows. In some
cases, no truck and driver are assigned to a route due to limited resources. In this case, a
penalty is applied in the objective function. The penalty roughly corresponds to the cost
of assigning the route to an external distribution company. We also apply penalties when a
driver works more than her maximum daily working hours or compatibilities are not satisfied.
The maximum overtime is modeled as a hard constraint, as well the weekly maximum working
hours.

The MILP model uses the following parameters:

• DCw - Cost of driver w ∈W

• DOTCw - Overtime hour cost of driver w ∈W

• PR - Penalty for route not assigned

• Γ - Total daily time (1440)

• Src - Service time of client c ∈ C in the route r ∈ R

• ∆r
ab - Total distance between points a and b in the route r ∈ R

• ∆r - Total distance on route r ∈ R

• S∗
r - Total service time on route r ∈ R

• Ωt - Truck t ∈ T average speed

• (αc, βc) - Limits of time windows of client c ∈ C

• Er - Set of routes segments in the route r ∈ R

• Cr - Set of clients in the route r ∈ R

• Dr - Day in which the route r ∈ R is executed
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• L - Truck loading time

• Rd - Routes in the day d ∈ D

• Hw - Daily maximum working hours of driver w ∈W

• H∗
w - Weekly maximum working hours of driver w ∈W

• Ξ′
wc - Equals to 1 if it is strictly forbidden to assign the driver w ∈W to routes containing

the client c, equals to 0 otherwise

• Ξ+
tc - Equals to 1 if it is strictly forbidden to assign the truck t ∈ T to routes containing

the client c, equals to 0 otherwise

• Ξ∗
tw - Equals to 1 if it is strictly forbidden to assign the driver w ∈ W and the truck

t ∈ T to the same route, equals to 0 otherwise

• Φ′
wc - Equals to 1 if it is not desirable to assign the driver w ∈ W to routes containing

the client c, equals to 0 otherwise

• Φ+
tc - Equals to 1 if it is not desirable to assign the truck t ∈ T to routes containing the

client c, equals to 0 otherwise

• Φ∗
tw - Equals to 1 if it is not desirable to assign the driver w ∈ W and the truck t ∈ T

to the same route, equals to 0 otherwise

• dep - Depot

• f, l ∈ C - First and last clients of a route

The equations (3.1) to (3.33) defines the model proposed. All the variables that represents
time instants or intervals as well the temporal parameters are expressed in minutes. Every
time the characters f and l appear as a client-index in the model, they represent the first and
last clients of the route.

Min
∑
w∈W

∑
d∈D

(ζwd ∗DCw +DOTCw ∗ ϱwd) + PR ∗ µr + penComp (3.1)

Subject to ∑
w∈W

xwr + µr = 1 r ∈ R (3.2)

∑
i∈T

yir + µr = 1 r ∈ R (3.3)

max(αc, θcr) ≤ ηir ∀r ∈ R c ∈ Cr (3.4)
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ηcr + Src ≤ ϕcr + µr ∗ Γ ∀r ∈ R, c ∈ Cr (3.5)

ϕc1,r +
∑
i∈T

yir ∗∆r
c1,c2/Ωi ≤ θc2,r ∀r ∈ R, (c1, c2) ∈ Er (3.6)

ϕdep,r − (ηls + Ssl +
∑
i∈T

yis ∗∆s
l,dep/Ωi)− L ≥ (γrs − 1) ∗ Γ ∀r, s ∈ R|Dr ̸= Ds (3.7)

xwr + xws ≤ γrs + γsr + 1 ∀r, s ∈ R, w ∈W (3.8)

yir + yis ≤ γrs + γsr + 1 ∀r, s ∈ R, i ∈ T (3.9)

∑
r∈Rd

xwr ≤ |R| ∗ ζwd ∀w ∈W, d ∈ D (3.10)

πwd ≤ ϕfr + Γ ∗ (1− xwr) ∀w ∈W, d ∈ D , r ∈ Rd (3.11)

ϵwd + Γ ∗ (1− xwr) ≥ ϕlr +
∑
i∈T

yir ∗∆r
l,dep/Ωi ∀w ∈W,∀ d ∈ D , r ∈ Rd (3.12)

ϵwd − πwd ≤ Hw + ϱwd ∀w ∈W, d ∈ D (3.13)

∑
d∈D

(ϵwd − πwd) ≤ H∗
w ∀w ∈W (3.14)

xwr ≤ (1− Ξ′
wc) + (1− Ξ′

wc) ∗ p′wc − Φ′
wc ∀w ∈W, c ∈ Cr (3.15)

yir ≤ (1− Ξ+
ic) + (1− Ξ+

ic) ∗ p
+
ic − Φ+

ic ∀i ∈ T , c ∈ Cr (3.16)

xwr + yir ≤ (2− xi∗iw) + (2− Ξ∗
iw) ∗ p∗iw − 2 ∗ Φ∗

iw ∀w ∈W, i ∈ T, r ∈ R (3.17)

penComp =M ∗ (
∑
i∈T

∑
c∈C

p+ic+
∑
w∈W

∑
c∈C

p′wc +
∑
w∈W

∑
i∈T

p∗iw) (3.18)
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ϕdep,r +
∑
i∈T

yir ∗ (∆r −∆r
l,dep)/Ωi +S∗

r ≤ θlr + Srl + Γ ∗ µr ∀r ∈ R (3.19)

ϕdep,r +
∑
i∈T

yir ∗ (∆r
dep,f )/Ωr ≥ αf − Γ ∗ µr ∀r ∈ R (3.20)

xwr ∈ 0, 1 ∀w ∈W, r ∈ R (3.21)

ytr ∈ 0, 1 ∀t ∈ T, r ∈ R (3.22)

µr ∈ 0, 1 ∀r ∈ R (3.23)

0 ≤ ηcr ≤ βc − Src ∀r ∈ R, c ∈ Cr (3.24)

0 ≤ θcr ≤ βc − Src ∀r ∈ R, c ∈ Cr (3.25)

0 ≤ ϕcr ≤ βc ∀r ∈ R, c ∈ Cr (3.26)

πwd, ϵwd ≥ 0 ∀w ∈W,d ∈ D (3.27)

0 ≤ ϱwd ≤ 0.2 ∗Hw ∀w ∈W,d ∈ D (3.28)

p′wc ≥ 0 ∀w ∈W, c ∈ C (3.29)

p+tc ≥ 0 ∀t ∈ T, c ∈ C (3.30)

p∗tw ≥ 0 ∀t ∈ T,w ∈W (3.31)

ζwd ∈ 0, 1 ∀w ∈W,d ∈ D (3.32)

γsr ∈ 0, 1 ∀r, s ∈ R (3.33)

The binary variable xwr defines if the driver w ∈ W is assigned to the route r ∈ R.
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Similarly, yir is a binary variable that defines if the truck i ∈ T is assigned to the route r ∈ R.
In the model implementation, no y variable is created when the truck capacity is lower than
the total demand in the route. The variables θcr, ηcr and ϕcr define, respectively, the arrival
time, service begin time and departure time for client c ∈ C and route r ∈ R. The binary
variable γrs defines if the routes r, s ∈ R can be assigned to the same driver and truck. Routes
in different days have no restrictions of this kind. The variables πwd and ϵwd represent the
first departure and last arrival time for driver w ∈W in day d ∈ D. The variables ζwd define
that the driver w ∈W was assigned to a route in the day d.

Some variables are defined to describe situations where penalties must be applied. The
variable µr represents a non-executed route, ϱwd represents instead the overtime of driver
w ∈ W in day d ∈ D. The variables, p′wc, p+ic and p∗tw are, respectively, binary variables
that represent non-desirable driver/client, truck/client and truck/driver assignments. Finally,
penComp simply sums up all the non-desirable assignment penalties.

Constraints (3.2) and (3.3) define that, in order to execute a route, we should assign a
driver and a truck, otherwise the µr variable corresponding to that route would be activated.
Constraints (3.4) to (3.6) define the minimum begin service time, client departure time and
client arrival time, respectively. In (3.7), we verify if it is possible to assign the same route
to the same pair driver/client. The two following constraints avoid or permit it, according
to the value of variables γrs and γsr. Constraints (3.10) check if a driver is used in the
day. In constraints (3.11) to (3.14), the driver working hours (including eventual pauses) are
calculated and limited. Constraints (3.15) to (3.18) check the assignment incompatibilities.
Finally, (3.19) defines a lower bound to arrive in the last client and (3.20) defines an upper
bound for the departure of a route. The remaining constraints ensure variable domains.

3.6 Case study

In this section, we present the computational results that we obtained on a case study. The
aim of the tests we performed was to evaluate the DSS performance in finding good solutions.
We used a PC equipped with a processor Intel Core i5-7200 with 2.5 GHz, Windows 10 and
8GB of RAM. The heuristic was implemented using C++ and the model using JuMP library
of Julia language. To solve the model, we used the IBM MILP solver CPLEX 12.8.

The instances we used are taken from a realistic scenario originating in the Italian region
of Basilicata. All the instances have some common characteristics, such as 187 clients, 2
types of vehicles, truck average speeds (40 km/h for the larger vehicle type and 60 km/h
for the smaller vehicle type), the daily demands, the assignment resctrictions, 8 hours of
maximum shift duration, and 60 minutes between two consecutive routes assigned to the
same driver/truck. In Table 3.1 we report some details on number of customers and daily
demands.
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Table 3.1: Number of clients and total demands per day

Day Mon Tue Wed Thu Fri Sat
N. of
clients 37 37 44 38 51 2

Total
demand 530 490 560 540 630 60

We created instances by attempting variations in the number of vehicles of each type,
capacity of vehicles, time window size and maximum number of clients per route. All those
variations generated a total of 40 instances, divided in 5 blocks of 8 instances each. All tests
were executed like in a standard use of the software, as described in Section 3.4. To give a
user perspective of the results we limited the maximum run time of the MILP solver to 30
minutes.

Table 3.2 summarizes the main results we obtained. The table reports the identification
number of each instance (ID), the truck capacity (TC), the time window size (TW), the
maximum number of clients per route (MCR) and the number of trucks per type (N. of
trucks).

For what the concerns the results obtained by the optimization method, we highlight in
column NR the number of routes generated by the MS-ILS heuristic adopted in the first
phase of our algorithm, and in column Km the total distance of such routes. The first phase
required between one and two minutes to solve any of the instances in the table. We could
not find a clear correlation between instance configuration and run time of the algorithm.
Regarding the solution quality, we observe that the number of routes generated by the first
phase algorithm does not have a significant correlation with number of vehicles used and
total distance (correlations −0.008 and 0.03, respectively). Even in instances with a total
of 10 trucks the number of routes does not change significantly. On the other hand, fleet
total capacity creates a larger variation on number of routes as well as the total distance run
(correlations −0.73 and −0.71, respectively). As we can see, the number of routes and total
distance grow almost equally as the fleet capacity reduce.

Average distance by route is 156 km, with a small standard deviation of only 4.7 km. This
means all routes can be traveled in less than four hours, even with the slowest vehicle. This is
an advantage in small-sized time window scenarios and makes the problem regarding breaks
along the day less relevant.

In the second phase, the model was able to find assignments to all routes for about 30%

of the instances. In another 42% of instances, only one or two routes were not assigned. In a
real life operation this kind of solutions is not a major concern if visualized in advance. The
decision maker can improve these solutions by contacting an external truck and driver, or
delaying some deliveries.

However, cases where a higher number of non-assigned routes (as for instances 1 and 2 in
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Table 3.2: Instance variable parameters and main data about obtained solutions. Abbreviations :
TC - Truck Capacity, TW - Time Window, MCR - Maximum clients per route, NR - Number of
routes, Time - Model solving run time, UB - Model objective function, LB - Lower bound, NAR -
Non-assigned routes

Parameters Results

ID TC TW MCR N. of
trucks NR Km Time UB LB Gap NAR

1A

70/60 6-18 6

3 - 5 48 7635 1845 15435 15084 2.32 3
2A 2 - 6 47 7610 1857 15469 15133 2.2 3
3A 4 - 4 48 7587 1837 15435 15084 2.3 3
4A 5 - 3 49 7699 1813 5522 5176 6.7 1
5A 6 - 2 49 7551 1857 10522 10084 4.3 2
6A 7 - 3 49 7615 1839 15380 15107 1.8 3
7A 3 - 7 49 7632 1901 10380 10084 2.9 2
8A 5 - 5 49 7632 1833 10380 10084 2.9 2
1B

70/40 6-18 6

3 - 5 58 9197 1834 1198 751 5.9 0
2B 2 - 6 60 9388 1907 11251 5684 97.9 2
3B 4 - 4 58 9282 1833 5618 5212 7.8 1
4B 5 - 3 59 9163 1831 5671 5196 9.1 1
5B 6 - 2 56 9109 1814 671 212 216.5 0
6B 7 - 3 58 9512 1849 476 210 126.6 0
7B 3 - 7 58 9167 1839 1676 1374 21.2 0
8B 5 - 5 58 9237 1832 5444 5105 6.6 1
1C

50/40 6-18 6

3 - 5 69 10179 1814 1337 814 64.2 0
2C 2 - 6 69 10254 1812 6337 684 826.4 1
3C 4 - 4 68 10131 1812 1241 127 87.7 0
4C 5 - 3 70 10365 1813 1337 120 101.4 0
5C 6 - 2 70 10365 1813 1390 117 108.8 0
6C 7 - 3 69 10239 1812 440 84 423.8 0
7C 3 - 7 69 10402 1813 551 110 441.0 0
8C 5 - 5 69 10383 1838 508 84 504.7 0
1D

70/60 7-17 8

5 - 3 46 7409 1848 11284 10748 5.0 2
2D 2 - 6 47 7314 1833 11284 10748 5.0 2
3D 4 - 4 47 7359 115 11284 11284 0 2
4D 5 - 3 46 7402 106 16251 16251 0 3
5D 6 - 2 47 7338 1840 16347 15148 7.9 3
6D 7 - 3 46 7442 355 10476 10476 0 2
7D 3 - 7 47 7466 133 11076 11076 0 2
8D 5 - 5 47 7454 194 5476 5476 0 1
1E

70/60
7 - 13
and
11 - 18

8

5 - 3 46 7307 48 31205 31205 0 6
2E 2 - 6 47 7456 54 36453 34653 0 7
3E 4 - 4 46 7336 54 16559 16559 0 3
4E 5 - 3 47 7520 56 16400 16400 0 2
5E 6 - 2 46 7476 67 11443 11443 0 2
6E 7 - 3 47 7465 67 15637 15637 0 3
7E 3 - 7 47 7444 70 21301 21301 0 4
8E 5 - 5 46 7635 69 733 733 0 0
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block E) are more critical. Those cases could be caused by problems like deliveries imbalance,
non appropriated fleet size or worse, a bad warehouse location. On the other hand, it could
represent a lack o efficiency of the algorithm in building routes and schedules with the available
resources, which can be verified with a deeper solution analysis.

Table 3.2 also highlights a low number of instances solved to optimality (14 out of 40) and
some large gaps. The gap increases when the fleet capacity is reduced and the time windows
get tighter. As the gaps were not directly connected with the quality of the solutions, we
looked for another factors that could be interfering in the convergence of model solving. To
investigate changes that could provide a better performance in the proposed method, we
tested a modified version of the model in which variable ζwd as well constraints 3.10 were
removed.

The results that we obtained with this simplified model are shown in Table 3.3. The
changes we made on the model were useful in improving the solution convergence, aa all the
instances were solved to the proven optimality. All but one of instances were solved in less
than one minute, and in many cases the gap between the objective functions found on regular
and modified versions were lower than 10%. The numbers of non-assigned routes in this
model version were the same as those found with the original model. This makes us conclude
that the simplified model is a good compromise between the representation of the real-world
problem and the need fo a quick and effective solution convergence.



3.6. Case study 48

Table 3.3: Results obtained solving the model without drivers fixed costs. Abbreviations: Time
- Model solving run time in seconds, UB - Model objective function, LB - Lower bound, NAR -
Non-assigned routes

Results
ID Time UB LB Gap NAR
A1 16 15000 15000 0 3
A2 15 15000 15000 0 3
A3 13 15000 15000 0 3
A4 15 5000 5000 0 1
A5 14 10000 10000 0 2
A6 15 15000 15000 0 3
A7 14 10000 10000 0 2
A8 15 10000 10000 0 2
B1 20 600 600 0 0
B2 20 10600 10600 0 2
B3 16 5000 5000 0 1
B4 23 5000 5000 0 1
B5 16 600 600 0 0
B6 22 0 0 0 0
B7 19 1200 1200 0 0
B8 14 5000 5000 0 1
C1 21 600 600 0 0
C2 35 5600 5600 0 1
C3 32 0 0 0 0
C4 32 0 0 0 0
C5 211 0 0 0 0
C6 18 0 0 0 0
C7 17 0 0 0 0
C8 22 0 0 0 0
D1 20 10600 10600 0 2
D2 17 10600 10600 0 2
D3 28 10600 10600 0 2
D4 37 15600 15600 0 3
D5 17 15600 15600 0 3
D6 16 10000 10000 0 2
D7 22 10600 10600 0 2
D8 25 5000 5000 0 1
E1 15 30600 30600 0 6
E2 25 35600 35000 0 7
E3 26 15600 15600 0 3
E4 27 15600 15600 0 2
E5 72 10600 10600 0 2
E6 18 15000 15000 0 3
E7 14 20600 20600 0 4
E8 15 0 0 0 0
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3.7 Conclusions

In this chapter, we presented a decision support system to help decision makers in the solution
of real cases of a Multi-Trip Rich Vehicle Routing Problem with Truck and Driver Scheduling,
a problem where good delivery routes need to be created and then matched with the available
trucks and drivers. We proposed a two-phase heuristic procedure, in which the first phase
is an adaptation of a metaheuristic from the literature, and the second phase consists of a
mathematical model.

Extensive computational experiments were performed on realistic instances. We could
observe that the system had troubles in identifying good solutions in very restricted scenarios,
but it could consistently produce good quality solutions in other reasonable scenarios. For
such scenarios, we could also note that the algorithm had a regular performance behavior,
and this is an important feature to make the user trust the software. The run time was most
of mostly low, satisfying the requirements of the system without compromising the solution
qualities.

Future research directions will be concentrated on adapting and testing the current ap-
proach in more flexible and general scenarios. For example, when deliveries can be done in
the next day, vehicles or drivers are not available in some days of the week, or when different
truck average speeds must be used depending on the fact that the vehicle is in an urban area
or not. Considering the user experience, we plan to make visible to the decision maker data
about road blocks, tolls, and information on client satisfaction, to help her in the evaluation
of eventual route changes. A synchronization with the warehouse operation software is also
being evaluated to improve the allocation of workers to recover products and load trucks. We
also plan to replace the mathematical model with a quick and effective metaheuristic, so as
to be able to provide in quick time good-quality problem solutions.
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Chapter 4

An Iterated Local Search for a
Pharmaceutical Storage Location
Assignment Problem with
Prohibition and Isolation
Constraints

In healthcare supply chain, centralised warehouses are used to store large amounts of
products close to hospitals and pharmacies in order to avoid shortages and reduce storage
costs. To reach these objective, the warehouses need to have efficient order retrieval and
dispatch procedures, as well as a storage allocation policy that allows to keep the items
safe. Considering this scenario, we present a Storage Location Assignment Problem with
Prohibition and Isolation Constraints, that models the targets and restrictions of a storage
policy in a pharmaceutical warehouse. In this problem, we look for the minimisation of the
total distance travelled by the order pickers to recover all products required in a set of orders.
We propose an Iterated Local Search algorithm to solve the problem, and present numerical
experiments based on simulated data. The results show a relevant improvement with respect
to a greedy full turnover procedure commonly adopted in real life operations.

4.1 Introduction

Healthcare services are strongly sensible to equipment or medicine shortages, as they
could cause attendance delays and interruptions and consequently put patient lives at risk.
Traditionally, the main approach to avoid this problem was the use of high inventory levels
and constant item replenishment Uthayakumar and Priyan (2013) Aldrighetti et al. (2019).
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However, this solution has been often considered expensive and hard to be managed, as it
requires large dedicated spaces into facilities and workload of healthcare personnel Volland
et al. (2017).

Nowadays, more efficient approaches have been adopted, as acquisitions through Group
Purchasing Organisations (GPO) and wholesalers. One of the most successful approaches is
the sharing of centralised warehouses to store together products to be distributed to different
customers located in the same geographical area. Centralised warehouses are particularly
useful because they allow healthcare facilities to share a common structure to store a large
volume of products and receive them quickly when they are needed. This enables a constant
material flow, a reduction in the personnel costs, a reduced storage space in the customer
facility and a lower work burden over healthcare workers.

The advantages described above are highly dependent on the warehouse reliability and
capability of delivering the ordered products in the short terms defined by the customers.
This reliability is, in turn, a direct result of an efficient warehouse internal organisation,
which requires a good storage location policy.

A storage location policy is a general strategy to assign Stock Keeping Units (SKU) to
storage positions inside a warehouse. It aims to optimising a metric (e.g. total time or distance
travelled to store and retrieve SKUs, congestion, space utilisation, pickers ergonomic), while
considering issues like product re-allocations efforts, demand oscillation, picking precedence
and storage restrictions.

The metric commonly adopted to evaluate the quality of these policies is the distance
travelled by the pickers to retrieve all products in a set of orders. This metric is particularly
relevant because picking operations accounts for around 35% of the total warehouse opera-
tional costs (Wang et al., 2020) and the time/energy spent to reach a product is a waste of
resources that must be minimised. In other contexts, the evaluation can also consider issues
like congestion, picker ergonomic, product storage conditions and total space utilisation, that
can also lower the warehouse operation efficiency.

In this chapter, we describe a problem originated from a real life operation of a pharmaceu-
tical product distributor. It consists in the optimisation of a dedicated storage allocation pol-
icy in a picker-to-parts warehouse, i.e. a warehouse where each product has a fixed/dedicated
position and pickers travel until product location to retrieve order items. Most specifically,
we deal with a Storage Location Assignment Problem with Prohibition and Isolation Con-
straints (SLAP-PIC). In this problem, some products can not be assigned to some locations
due to reasons like refrigeration or ventilation, and some other products need to be isolated in
specific areas due to toxicity or contamination concerns. Furthermore, the problem considers
a flexible warehouse layout configuration, with shelves not necessarily grouped on blocks or
in a unique pavilion.

This study provides two main contributions. The first consists in defining a framework to
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represent general warehouses and to extract the relevant information from this representation.
The second is an Iterated Local Search (ILS) algorithm, that takes a set of orders and a
warehouse layout in input and returns a list of assignments of products to locations that
minimises the total distance travelled to fulfill the orders.

The remainder of the chapter is organised as follows: in Section 4.2, a broad literature
review is presented; Section 4.3 provides a detailed problem description; Section 4.4 presents
all the data processing done before the optimisation starts; Section 4.5 describes the ILS
algorithm; Section 4.6 describes the numeric experiments carried out. In Section 4.7 the
results are presented and then the conclusions are drawn in Section 4.8.

4.2 Literature Review

The Storage Location Assignment Problem (SLAP) is a generalisation of the well know
Assignment Problem in which the objective function is a complex function that usually de-
pends of several factors, like warehouse layout, picking policy, picker routing policy and order
batching (Dijkstra and Roodbergen, 2017). It aims to optimise some warehouse metrics like
shipping time, equipment downtime, on time delivery, delivery accuracy, product damage,
storage cost, labour costs, throughput, turnover and picking productivity (Staudt et al. (2015),
Reyes et al. (2019)). The two most common metrics in the literature are picking travel time
and travel distance (Reyes et al., 2019), which both require to solve special cases of either the
Travelling Salesman Problem (TSP) or the Vehicle Routing Problem (VRP), according to the
presence of picker capacity constraints or to the simultaneous use of multiple pickers. Using
the picker travel distance has as advantage an easier evaluation, as it does not requires to deal
with issues like congestion and items handling/sorting. Additionally, there are no concerns
about picker average speed or searching and handling delays.

In this context, several methods to optimise order picking routes have been proposed, both
inside SLAP variants studies or in independent researches. As pointed out in Dijkstra and
Roodbergen (2017), routing problems in warehouses can be seen as special case of the Steiner
Travelling Salesman Problem, that in some layouts can be solved to optimality (Ratliff and
Rosenthal (1983), Lu et al. (2016) and Scholz et al. (2016), Cambazard and Catusse (2018))
but in general layouts is mostly solved using heuristics (De Santis et al. (2018), Chen et al.
(2019), Roodbergen and Koster (2001), Theys et al. (2010)). The exact methods cited,
however, are used to solve problems with already defined warehouse allocations (as can be
seen also in Gu et al. (2007) and Reyes et al. (2019)) and they are mostly algorithms based
on a graph theoretic algorithm for single-block warehouses Lu et al. (2016). A noticeable
exception for a joint storage assignment and routing exact optimisation strategy is presented
in Bolaños Zuñiga et al. (2020), but the proposed model reaches optimality only on small
instances.
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Nonetheless, it is known that in real life operations pickers tend to deviate from optimal or
non-intuitive routes (Elbert et al., 2017). To simulate this behaviour, many studies consider
simple heuristics for picker routing as return point method, largest gap method, returning
point or S-shape routing (De Koster et al. (2007), Elbert et al. (2017), Kim et al. (2020)).
These heuristics also simplify order picking evaluation as they quickly allow the computa-
tion of travelling distances in deterministic problems or the evaluation expected travelling
distances in stochastic problems (Dijkstra and Roodbergen, 2017). For the interested reader,
an extensive analysis of these algorithms is presented in De Koster et al. (2007).

It is important to notice that the routing method efficiency is influenced by the warehouse
layout. In both SLAP and picker routing problems, the warehouses can have a single block
or multiple blocks. A block is defined as a set of parallel shelves with tight corridors among
them (aisles), from where it is possible to pick products located in the two shelves at their
borders. The connection between these corridors (and consequently between different pairs
of shelves) is called cross-aisle.

In the same sense, SLAP literature cites frequently two types of picking policies: picker-to-
parts and parts-to-picker. In a picker-to-parts warehouse, as those considered in SLAP-PIC,
the picker receives an item list and visits each item position and transport the items to an
accumulation/expedition point. Conversely, in a parts-to-picker system, an automated storage
and retrieve system, composed by one or more automated guided vehicles, picks ordered items
and delivers them in the place where they will be prepared to be dispatched. We can also
highlight the existence of the pick-and-pass system (also called progressive zoning system Pan
et al. (2015)), in which each picker is responsible to retrieve a specific subset of products in
an order and then deliver the incomplete order to the next picker, until all the products to
be put together and dispatched.

Once the evaluation method is defined and the parameters above are set, the main decision
in SLAP is the storage policy. Among the most relevant policies, we can cite: random storage,
dedicated storage and group based storage (Wang et al. (2020), Žulj et al. (2018)).

A random storage policy allocates products in empty positions inside the warehouse using
a random criteria (e.g. closest open location), without including any further complexity
in the decision process. In opposite way, dedicated storage ranks the products according
to some criteria - popularity, turnorver, Cube per Order Index (COI) - putting the best
ranked products close to the accumulation/expedition locations. Finally, class based storage
separates products in groups and assigns the most interesting groups to places close to the
accumulation/expedition positions, without fixing a specific position for each product in the
set. The SLAP-PIC uses a dedicated storage policy where the metric is the total travelled
distance.

Several studies report that random storage policies lead to a better space utilisation, due
to frequent reuse of storage positions, but rise the travelled distances to pick the products
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(Muppani and Adil, 2008b) and require higher searching times or control over product lo-
cations (Quintanilla et al., 2015). The distance, on other hand, is successfully reduced in
dedicated storage policy, but this policy rises re-allocations costs (because of demand fluc-
tuations) and space utilisation, as empty spaces can be reserved to products not currently
available. It is stated that class based policies (or zoning) is a balance between random and
dedicated storage strategies, but it requires more strategic efforts to define the number of
groups and their positions on the warehouse.

Random storage is seldomly studied in the literature, being more an operational and
practical approach used as a benchmark to evaluate other methods Pan et al. (2015). One
noticeable exception is Quintanilla et al. (2015), which proposes a heuristic to dynamically
allocate pallets in a storage area considering stacking constraints in order to reduce the total
area used. Pallet stacking is also discussed in Öztürkoğlu (2020), which proposes a bi-objective
mathematical model and a constructive algorithm.

A dedicated storage policy is considered in Dijkstra and Roodbergen (2017), in which
exact distance evaluations are used to define the product assignment. Guerriero et al. (2013)
proposes a non-linear model and an ILS to address a storage allocation problem in a multi-level
warehouse considering the compatibility between product classes. Wang et al. (2020) departs
from an S-shape routing policy and multi-level storage to create a two-phase algorithm to
assign the items to locations, and use a multi-criteria approximation to evaluate the solutions.
Other notable works regarding dedicated storage are Battini et al. (2015), which proposes a
storage assignment and travel distance estimation to design and evaluate a manual picker to
part system and Bolaños Zuñiga et al. (2020), which proposes a model to describe a storage
assignment problem, solving it to proven optimality for small instances.

Class based policies are studied in Rao and Adil (2013), Muppani and Adil (2008b) and
Muppani and Adil (2008a). In Rao and Adil (2013), class boundaries are defined based on
the picking travel distance in a two-block and low-level warehouse where returning routing
policy is used. The second uses a Simulated Annealing algorithm to define classes and assign
locations to them inside a warehouse considering simultaneously space and picking costs. The
work in Muppani and Adil (2008a) extends Muppani and Adil (2008b) by using a branch-and-
bound algorithm instead of a heuristic, and by including space use reduction in the considered
metrics.

In Pang and Chan (2017), the authors propose a data-mining based algorithm that uses
association rules to define product dedicated positions in order to minimise the travelled dis-
tance in a picker-to-parts warehouse. Similar approaches are presented in Ming-Huang Chiang
et al. (2014) for class based policy, Chuang et al. (2012) for cluster assignment, Fontana and
Nepomuceno (2017) for product classification and storage, and Kim et al. (2020) for frequent
item set grouping and slot allocation. In Li et al. (2016), an ABC classification and product
affinity method is used to define the best positions for the products.
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Picker-to-parts systems are addressed in Pan and Wu (2009), Pan et al. (2012) and Pan
et al. (2015). The first models the warehouse operation as a Markov chain in order to calculate
the expected distance travelled by the picker in three different zoning cases. The second
proposes a heuristic for a case where congestion effects are considered. The last uses a genetic
algorithm to define the best workload balance among the pickers.

More complex problems are surveyed in van Gils et al. (2018). In Van Gils et al. (2018),
batching, routing and zoning are combined to optimise the warehouse operation. A discussion
on storage allocation with product picking precedence can be found in Žulj et al. (2018),
whereas Thanos et al. (2019) defines a problem where allocation and routing must be decided
together in order to avoid congestion during the picking.

4.3 Problem description

The SLAP can be shortly described as follows: given a set P of products to be stored, a
set O of orders, in which an order is a subset of products to be picked up by a picker in a single
route, and a set L of locations in a warehouse, define an assignment g : P → L in which the
evaluation function v(g,O) = z is minimised. In other words, given the evaluation function
v that maps a value to each ordered pair consisting of a set of orders and an assignment of
products to locations, define the assignment that minimises v.

In the SLAP-PIC, the SLAP variant described here, g is an injective function, i.e. each
product is assigned to a single location and each location receives a single product. Addi-
tionally, v(g,O) is defined as the minimum travelled distance to pick all the products in
each order (designated by D(g,O)), plus the penalties for non desirable or missing alloca-
tions, (designated by Φ(g)). Following the company operational rules, it is assumed that the
warehouse uses a picker-to-parts picking policy (the picker visits the products locations) and
orders splitting/batching are not allowed, making each order an individual and independent
route. These assumptions make it possible to decompose the distance D(g,O) as the sum
of the minimal travelling distances to pick the products in each order o ∈ O, designated by
d(g, o). With these considerations, the SLAP-PIC objective function can be described as:

Min z = v(g,O) =
∑
o∈O

d(g, o) + Φ(g) (4.1)

It can be noticed that to evaluate d(g, o) it is necessary to solve another optimisation
problem, more specifically a variant of the TSP. Namely, if there is a single accumula-
tion/expedition point, each product is assigned to a unique location and Po = {p1o, ..., p

|Po|
o } ⊆

P is the set of products requested in an order, then d(g, o) is the minimum distance to depart
from the accumulation/expedition point, visit all the locations (g(p1o), ..., g(p

|Po|
o )) in the best

possible order and then come back. Conversely, in the SLAP-PIC we allow the presence of
more than one accumulation/expedition point, so the picker can depart from any of these
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points and return to another if this operation reduces the total distance travelled d(g, o). The
algorithms can be easily adapted to deal with the case in which the expedition points are,
instead, fixed for each product.

Defining an optimal picker routing in the scenario above is relatively simple if the ware-
house is organised in blocks of identical and parallel shelves. However, in the SLAP-PIC,
the shelves can have different sizes, cell quantities, orientations and positioning (as will be
detailed in Section 4.4) and also be located in different pavilions. To deal with this setting, a
regular distance matrix containing the distances between each pair of locations is considered
as the input of the distance minimisation method, disregarding any further information about
the warehouse organisation.

The second part of the objective function, the penalty value Φ(g), is evaluated based
on two factors: number of products not assigned to any location and number of undesired
allocations. In this sense, the possible configurations of the function g are limited by a set F
of assignment prohibitions and a set I of isolation constraints. Each assignment prohibition
f ∈ F is a hard constraint (i.e. it must be strictly respected) composed by a tuple of three
values (p, n, c) representing a product p, the nature n of the prohibited location (cell, shelf or
pavilion) and the code c of the prohibited location, respectively. For instance, the prohibition
(p1, “shelf”, k1) defines that product p1 cannot be allocated on shelf k1.

An isolation constraint is based on the product classification. Given a set T of types,
representing the most relevant product characteristic to the storage (toxic, radioactive, humid,
etc...), an isolation constraint ι ∈ I is a tuple of three values (t, n, s) specifying that products
of type t ∈ T should be allocated in an isolated n ∈ {“cell”, “shelf”, “pavilion”} with an
enforcement s ∈ {“weak”, “strong”}. The enforcement s defines if the isolation is a hard
constraint or can be relaxed with a penalty.

4.4 Input data processing

A common assumption in studies about SLAP is the regularity of the warehouse layout.
Most of the times, the warehouse is represented by sets of parallel and identical shelves that
can be accessed through aisles between them and cross-aisles that allow moving from one aisle
to another. These sets are called blocks, and most of the literature about SLAP or picker
routing considers the presence of one or more blocks in the warehouse.

However, for several reasons, this assumption creates problems when a proposed algorithm
needs to be released to production environment. In many facilities, for example, physical or
operational barriers are present (like build columns and machines), so layouts cannot be
represented as simple blocks.

In this section, we describe the format we created to represent general warehouse layouts,
aiming at allowing the use of our algorithm to a large number of warehouses. Furthermore, we
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present the data processing performed to get the distance matrix of all the relevant positions
in the warehouse, and thus to make it possible to use TSP algorithms to evaluate the total
distance travelled by pickers to retrieve all the products in a set of orders.

4.4.1 Input format

The main objective in proposing a new format to describe the warehouse layout is to
allow a quick description of different types of layouts. More specifically, a good format should
provide: (a) easiness of transcription in a spreadsheet or text file; (b) readability; (c) direct
representation on relational databases; (d) a simple and robust representation of internal valid
paths; (e) possibility of defining pavilions and connections between them; (f) possibility of
defining multiple accumulation/expedition points; (g) possibility of defining heterogeneous
shelves and cells.

We defined points (a), (b) and (c) aiming at a future implementation in a decision support
system and also at an easy utilisation of the system, as most users are used to text files or
spreadsheets and most developers are comfortable in using relational databases.

The robustness to represent paths (point (d)) was considered due to the existence of several
operational rules that limit the traffic inside warehouses, mainly when it involves large vehicles
or robots. In the proposed format, it is possible to define rectilinear corridors (with a start
position, length, direction and sense) and rectilinear segments (with start and end position)
to connect two corridors (see Figure 4.1). Non rectilinear corridors or connections were left
out due to the variable number of points needed to define them and also because of the
difficult evaluation of their length. We also defined that corridors must be parallel to one of
the Cartesian axes, not allowing in this way oblique corridors.

Points (e) and (f) were adopted to take into consideration larger warehouses, in which
internal divisions are common and operations can be less centralised. Notwithstanding, the
pavilions must be always represented as rectangles, as allowing other formats would signifi-
cantly increase the representation complexity.

Point (g) is modelled to allow describing warehouses with a very diversified set of stored
items, from large machines that are positioned on pallets to small tools that can be stored in
cabinet drawers.

The resulting format is a union of seven tables (Pavilions, Shelves, Cells, Corridors, Curves
and Pavilion Exits, Accumulation/Expedition Points), as presented in Figure 4.2. Each pavil-
ion is composed of a code, a point (with coordinates x and y over a Cartesian plane) rep-
resenting the bottom-left extremity, width and length (the height is not important to our
problem, but can be easily included if needed). By its turn, each shelf has either a code, a
bottom-left point, the number of rows and columns, the size of the cells (width, length and
height) and the block code indicating where it is located. Each cell has a code, width, length,
row and column at the shelf, a reference to the shelf and a number of vertical levels (1 or
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Figure 4.1: Partial warehouse representation with main elements information. The dashed
lines are corridors, and the dashed arrows are curves

more). Corridors have a code, an initial point, a direction (horizontal or vertical), a sense
(up-down, bottom-up, left-to-right, right-to-left, both), a length and a reference to the block
where it is located. Each curve has a code, a reference to both corridors it connects, an initial
point and a final point (in this case the length is calculated by the application). Each block
exit contains a point, a width, a code and a reference to the blocks it connects. Finally,
accumulation/expedition points are composed of a code and a bi-dimensional coordinate.

Products and orders use similar structures, but with less data. Each products is repre-
sented by a tuple containing code, description and type (size and weight are not considered
in this problem) and each order with a tuple containing a code and a deadline. A list of items
of items is assigned to each order, where each item contains a product code and a quantity.

4.4.2 Distance matrix extraction

Once all input information has been loaded, it is necessary to process it to get useful
information for the algorithm. Basically, from a warehouse layout description we must extract
a distance matrix containing the distances from each delivery point or storage location to all
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Figure 4.2: Warehouse database

the others, and a compact representation of cells, shelves and blocks, to check if the allocation
prohibition and isolation constraints are being respected. The representation of warehouse
structures (i.e. cells, shelves and blocks) was done simply using standard object-oriented
classes, with no relevant improvements, so it is not detailed in the text.

To build the distance matrix we follow three steps: (1) transform the warehouse layout
in a directed graph; (2) separate the vertices that represent storage locations and accumu-
lation/expedition points from those that represent the paths in the warehouse; and (3) run
iteratively a shortest path algorithm to determine distances between vertices.

The first step, the conversion of the warehouse in a graph, starts by creating vertices to
represent accumulation/expedition points and inferior levels of the cells (i.e. those located
closer to the ground, that are the connection points between shelves and corridors). The
vertices are positioned in the central point of the cell level. After that, vertices to represent
high levels in cells are created, always in the level central point. In detail, when there is more
than one level in a cell, each vertex representing a cell level is connected by two arcs, one in
each sense, to the level immediately above and below. In other words, when a cell is divided
in five vertical levels, the third level is connected with the fourth and the second levels, but
not with the first or fifth levels. The edge length correspond to the vertical distance between
the level centres, that is the height of the cell divided by the number of cells (i.e. the height
of a single level). In the instances of our study, the level height is fixed in 1.5 units.

It is important to notice that in this approach vertices representing external adjacent
cells in a same shelf are not directly connected by an edge, except in some special cases that
are described later. This is based on the fact that, in many cases, a picker needs to do a
non-negligible backward movement to go from a cell to another. The length of this backward
movement, however, is as small as the distance from the closest corridor path to the shelf, so
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it depends on the input and can be adjusted by the user.
Once connections between the vertices in the shelves are finished, the process of connecting

these shelves to the corridors begins. We consider that each shelf can be accessed only by
its longest sides (except in squared shelves, that can be accessed by any side). In case of a
vertical shelf (i.e. a shelf with the larger side parallel to the y-axis), we consider that a path
may reach the shelf through its lateral (left/right) extremities, whereas for a horizontal shelf
we consider bottom/up extremities. When the shelf is squared, four corridors are selected,
following the same logic. A corridor can not be selected if it does not go through all the shelf
side or if it is located in a different pavilion. If there is not a corridor in one of the sides,
all the inferior cell levels in that side are connected to the adjacent cell levels in the opposite
side, to become accessible from the remaining corridor. As it can be noticed, this is one of the
special cases mentioned in the previous paragraph. If there are no corridors in the laterals of
the shelf, this shelf is considered unreachable.

After the adjacent corridors be defined, each inferior cell level vertex is connected by a
pair of edges (one in each sense) to a vertex created over the corridor exactly in front of the
cell vertex.

The new vertices created on corridors in the previous step are then merged with the
vertices that represent the extremities of the curves (that are always over corridors) to define
all the valid paths in the warehouse. Two consecutive vertices on a corridor are connected
by two edges in a two-way corridor (designated by the word ”both” in the field ”sense” on
corridor input data) and one edge otherwise. To avoid confusions, we defined that there is
not a curve on corridor interception points, thus it is not right to suppose that it is possible to
move from a corridor to another through these points unless a curve passing on it is defined.

Following the procedure, each vertex representing an accumulation/expedition point is
connected to the closest non-storage vertex in the pavilion in which it is located by two
edges, one in each sense. This connection can be a traversal one if there is no possibility of
establishing a horizontal or vertical one.

To connect two different pavilions, we first create a vertex to represent each pavilion exit
and then connect it to the closest vertex in each pavilion. The connection with pavilions
vertices are done in both senses, with the same rules adopted to connect the accumula-
tion/expedition points described in the previous paragraph.

After all these steps, we obtain a graph that represents the connections between all the
relevant points in the warehouse. During the graph building process, all vertices are associated
with the location they represent, so it is possible to associate each edge with the distance
between its incident vertices in the warehouse. Furthermore, each vertex receives a label that
is used to define if it is a storage vertex or a vertex representing an accumulation/expedition
point, thus being relevant in the distance matrix. The graph built is then passed to an
algorithm that calculates the distance matrix.
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The algorithm that calculates the distance matrix is a loop, where at each iteration
a Dijkstra shortest path algorithm is executed departing from one storage or accumula-
tion/expedition vertex. In this way, all the graph vertices are considered in the shortest
path evaluation.

4.5 Iterated Local Search

In this section, we describe the algorithm we propose to solve the SLAP-PIC. This algo-
rithm is an ILS heuristic in which a constructive greedy algorithm generates an initial solution
and three different neighbourhood structures are used to improve it.

The constructive algorithm is divided into two phases (see Algorithm 1). In the first
phase (lines from 6 to 23), it assigns locations to products without isolation constraints (i.e.
products that are not present in any tuple ι ∈ I) or with isolation constraints containing an
enforcement s = “weak”. In the second phase (lines from 25 to 40), it assigns locations to
isolated products, according to their types.

Initially, all the products are sorted by descending order of popularity, i.e. the products
more frequently required are put first, and those less frequently after. Similarly, the storage
locations are sorted by distance from the closest accumulation/expedition point. Then, the
most popular product is assigned to the closest empty location, if this assignment is allowed.
When an assignment is forbidden, the algorithm tries iteratively the next location, until an
allowed position is found or the loop reaches the last position. If a product belongs to a
strongly isolated type, it is not assigned during this phase.

In the second phase of the constructive algorithm, all the products belonging to a strongly
isolated type are divided by type (line 25 in Algorithm 1) and, similarly, the warehouse
locations that are isolated are grouped by level (block, shelf or cell), in line 26. The allocation
is done according to the structure size, starting from the isolated blocks and finishing with
the isolated cells. At each step, the product types that have the corresponding isolation
level are selected and sorted by decreasing order of frequency. Then, each type is assigned
to the isolated area where it is possible to maximise the total frequency, without worrying
with the internal assignment optimisation. After each step, the list of available positions and
products is updated. When all the available isolated spaces are occupied or all the products
are assigned, the algorithm ends.

It is important to notice that it may be impossible to assign all the products to the
locations in the warehouse due to prohibition and isolation constraints. This situation can
happen even when the number of available locations is higher than the number of products.
Furthermore, the constructive algorithm, as a heuristic method, may be not able to find
an initial valid assignment even when it exists. In both the cases mentioned, the solution
evaluation procedure penalises the objective function according to the number of products
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Algorithm 1 Greedy algorithm
1: g ← ∅ ◃ Start with an empty assignment
2: L∗ ← distanceSort(L) ◃ Locations ordered by distance
3: A← L∗ ◃ Available locations
4: P ← sortByFrequence(P )
5: ◃ First part of greedy algorithm
6: for each p ∈ P do ◃ For each product in P
7: if isStronglyIsolated(p) then
8: continue
9: end if

10: l← firstAvailable(A)
11: while true do
12: if l == null then
13: break
14: end if
15: if isForbidden(l, p) then
16: l← nextAvailable(A)
17: continue
18: end if
19: g ← g ∪ (p, l)
20: A← A\{l}
21: break
22: end while
23: end for
24: ◃ Second part of greedy algorithm
25: Λ← stronglyIsolatedProductsByType(P )
26: Ψ← availableIsolatedStructures(A)
27: µ← allocateOnIsolatedBlock(Y,Ψ)
28: ◃ First allocation. Assigns products isolated by block
29: g ← g ∪ µ
30: Ψ← updateAvailableIsolateStructures(Ψ, µ)
31: Λ← updatestronglyIsolatedProductsByType(µ, P )
32: ◃ Second allocation. Assigns products isolated by shelf
33: µ← allocateOnIsolatedShelf(Y,Ψ)
34: g ← g ∪ µ
35: Ψ← updateAvailableIsolateStructures(Ψ, µ)
36: Λ← updatestronglyIsolatedProductsByType(µ, P )
37: ◃ Third allocation. Assigns products isolated by cells
38: µ← allocateOnIsolatedCell(Y,Ψ)
39: g ← g ∪ µ
40: Ψ← updateAvailableIsolateStructures(Ψ, µ)

not assigned.
A valid solution, however, can still present one of the side effects of allocating groups of

isolated products together in the warehouse. The first is assigning relatively good positions
to several products with a low number of requests due to the existence of some very popular
products in the set, that are responsible by a skewed popularity of that group. The second
effect is approximately the opposite, i.e. very popular products can be allocated in bad
positions due to the fact that average popularity is low for their set. Both these problems are
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similar to those that are reported in class or zone based storage location problems (see Rao
and Adil (2013), Muppani and Adil (2008b)).

After the greedy algorithm creates an initial solution, its objective function value is calcu-
lated according to the procedure described in Section 4.5.1. The ILS heuristic enters then in a
loop that explores the solution space (lines 4 to 25 of Algorithm 2). This loop is composed by
three neighbourhood structures that are combined as a single local search, and a perturbation
method.

Algorithm 2 ILS algorithm
1: g∗ ← initialSolution(L,P ) ◃ Get greedy assignment
2: g ← g∗

3: nonImprovingIter ← 0
4: while nonImprovingIterations < IWI do
5: gw ← g ◃ Initialize the best solution on loop
6: g′ ← mostFrequentLocalNeighbourhood(g)

7: if v(gw,O)−v(g′,O)
v(gw,O) ≥ δ then

8: gw ← g′

9: end if
10: g′ ← insideShelfLocalNeighbourhood(g)

11: if v(gw,O)−v(g′,O)
v(gw,O) ≥ δ then

12: gw ← g′

13: end if
14: g′ ← insidePavilionNeighbourhood(g)

15: if v(gw,O)−v(g′,O)
v(gw,O) ≥ δ then

16: gw ← g′

17: end if
18: nonImprovingIter ← nonImprovingIter + 1

19: if v(g∗,O)−v(gw,O)
v(g∗,O) ≥ δ then

20: g∗ ← gw
21: nonImprovingIter ← 0
22: end if
23: g ← perturbation(g∗)
24: end while

In a loop iteration, each neighbourhood structure evaluates a small set of neighbours of
the current solution (denoted by g) and picks the one with lowest objective function value
(thus using a best improvement criteria). The best solution in the loop, denoted by gw, is then
compared with the best global solution, g∗, and every time gw is better, it is assigned to g∗ and
the number of iterations without improvement (line 22) is reset. Finally, the iteration closes
with a perturbation of g∗. The loop stops if the number of iterations without improvement
reaches the value of the input parameter iterations without improvements (IWI).

To avoid non significant improvements, we assume that an assignment g1 is better than
an assignment g2 if and only if the objective function value of g1 is at least 0.1% lower than
that of g2 (i.e. the ratio of between difference of solution values, v(g1, O)− v(g2, O), and the
old solution value v(g2, O) must be smaller than δ = −0.001).
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All the neighbourhood structures used in the local search are simple location swaps be-
tween two products. The first neighbourhood (mostFrequentLocalNeighbourhood) consists
in swapping the assignments of two products belonging to the subset of 20% most required
products. The second (insideShelfNeighbourhood) consists of swapping the assignments of two
products assigned to locations in the same shelf, working as an intensification of the search.
The third neighbourhood (insidePavilionNeighbourhood) is a wider search, in which pairs of
products assigned to the same pavilion have their locations swapped.

The neighbourhood structures work following the same steps: randomly choose two prod-
ucts, check if the swap between these products is valid, evaluate the change in objective
function and store the best solution found.

To check the swap validity, three rules are used: (1) all swaps that assign a product to a
forbidden position are not allowed; (2) no swaps are allowed between a product belonging to
a strongly isolated type and a product not belonging to a strongly isolated type; (3) no swaps
between products of different types are allowed. It is important to notice that validity does
not mean feasibility. In fact, while the two first rules were created to avoid infeasible solutions
in the search, the third was created to filter the moves in order to avoid recalculating the
penalties related to weak isolated types. It can be noticed that the second and third rules are
complementary (the third makes the second redundant). In the numeric tests we tested two
algorithm versions, one with rules (1) and (2), and the other with rules (1) and (3).

To evaluate the solution after a swap, we reevaluate the distances of the routes affected by
that swap and the total of products with weak isolation constraints allocated in altered areas.
As the number of swaps performed during the algorithm execution is huge and the number of
orders can easily reach some thousands, the procedures to evaluate them must have a strong
performance.

After all neighbourhoods have been explored and the global best solution has possibly
been updated, a perturbation is performed over the best global solution. It consists in ∥P∥/20
unconstrained and valid swaps, chosen randomly and applied in a loop. The resulting solution
is then used as the initial solution in the next ILS iteration.

4.5.1 Solution evaluation

To evaluate the routing distance, we propose a combination of two ideas: the first is using
different TSP algorithms according to the size of the instance and the second is to keep a
mapping of routes that passes from each position to recalculate only picking distances of
routes containing products involved in the swap. In the last case, initially the algorithm
retrieves all the routes affected and controls if a route passes from both locations where the
products are currently allocated. If the route has both locations on it, the reevaluation is
useless (because the set of locations to be visited does not change), otherwise it is evaluated
with the new location replacing the old one.
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The evaluation is controlled by the parameter TSP (α, β). In this parameter, the constants
α and β are two integers representing the order size thresholds used to choose each algorithm
method for estimating the minimum distance to visit the product locations in a route. Le |o|
be the number of items in an order o ∈ O, if |o| ≤ α an exhaustive search is run (i.e. all the
possibilities are tested and then the distance found is optimal). Otherwise, if α < |o| ≤ β, a
closest neighbour algorithm is used to initialise the route and a subsequent quick local search
is performed. In this local search, (|o| − 1) swaps among two consecutive locations are tested
in (|o| − 1) iterations (always departing from the first to the last product) and the current
solution is updated when the swap reduces the smaller distance. Finally, if |o| > β, just the
closest neighbour heuristic is used.

The route evaluation method described above presents a quadratic complexity, as the
exponential time approach is limited according to the number of visited points. Although it
does not guarantee an optimal route, it is better suited to our purpose of using non block-based
warehouse layouts than algorithms based on the method proposed in Ratliff and Rosenthal
(1983).

For explaining how the evaluation of penalties by breaking weak isolation constraints is
done, we use Algorithm 3 below. This pseudo code shows the process for shelves, but it is
practically identical for cells and pavilions.

Algorithm 3 Isolation penalty evaluation after a swap
1: totalPenalty ← 0
2: S ← allShelves(L)
3: Tw ←WeakIsolationTypes()
4: Ps ← productsAllocated(g, s) ∀s ∈ S
5: for each s ∈ S do
6: Pi ← {p | p ∈ Ps, type(p) ∈ Tw}
7: Pf ← {p | p ∈ Ps, type(p) /∈ Tw}
8: Ts ← {type(p) | p ∈ Ps}
9: ◃ Group products with isolation constraints by type

10: Ht ← {p ∈ Pi|type(p) = t} ∀t ∈ Tw

11: if |Pi| = 0 or |distinct(Ts)| = 1 then
12: continue
13: end if
14: penalty ← 0
15: x← maxt∈Tw(|Ht|) ◃ Type with max cardinality
16: r ← x
17: if |Pf | ≥ |Pi| then
18: penalty ←Wpen ∗ |Pi|2/|Ps|
19: else
20: penalty ←Wpen ∗ (|Pf |2 + r)/|Ps|
21: end if
22: totalPenalty ← totalPenalty + penalty
23: end for

First of all, the algorithm gets all products allocated and groups them by shelves (line
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4). For each shelf, products are grouped by type (line 9) and then the algorithm counts the
number of different product types assigned to the shelf. If there is only one type assigned to
the shelf or if no assigned product has an isolation constraint ι ∈ I|n = ”shelf” (see isolation
constraint definition on Section 4.3), no penalty is applied (lines 11 to 13). Otherwise, the
actual penalty evaluation is performed (lines 14 to 22).

The penalty strategy is based on the division of the products assigned to a structure
(which can be a shelf, a cell or a pavilion) into two groups, one with isolation constraints and
another without. One of these groups is defined as the minority (resp. majority) if it is the
group with less (resp. more) assignments in a structure.

Departing from the minority (majority) definition, the method tries to push the search
through the predominant configuration by penalising minority groups. For example, if the
shelf is mostly occupied by products belonging to types without isolation constraints, it
penalises the products with isolation constraints (lines 17 and 18) that are the minority.
Similarly, it penalises products belonging to types without isolation constraints if they are
the minority in the shelf (lines 19 and 20). Furthermore, to differentiate among similar
assignments, we consider the proportion of products belonging to the minority/majority over
the total number of products, instead of simply counting the number of products. This
decision was taken due to the fact that only counting the products was causing no changes
in the total penalty after a swap.

4.6 Instance set

In this section, we describe the numeric experiments performed to test the efficiency of
the proposed ILS algorithm. In these experiments, we observed the algorithm performance
on different instances, the average run time, the local search capacity of improving the initial
solution, the parameters’ value influence on the final solution and the solution quality.

We created three warehouse layouts with significant differences between them, not only
regarding the number of positions, but also regarding how these positions are distributed in
the area. A short description of the warehouses is provided in Table 4.1.

Table 4.1: Warehouse layout overview

ID pavilion shelves cells accum/disp points
W1 1 10 200 3
W2 1 10 240 3
W3 2 12 260 3

Visual representations of the warehouses are provided in Figures 4.3, 4.4 and 4.5. The
shelves are defined by the rectangles with circles on the corners. The dashed lines are the
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corridors and the dashed arrows are the connections between the corridors. The accumula-
tion/expedition points are represented by isolated circles, as well as the connection between
two pavilions is represented by a triangle (see the detail in the centre of Figure 4.5). In these
figures, it is possible to notice some of the aforementioned characteristics of these generalised
warehouses, as the presence of heterogeneous shelves or blocks, the mandatory moving sense
and the multiple accumulation/expedition points.

The experiments were divided into two parts. The first part was aimed to analysing the
algorithm performance considering only the travelled distance and thus its suitability to deal
with directly calculated distances. The second part tested the performance when considering
the prohibition and isolation constraints, in order to check if these constraints were well
handled in the algorithm.

We tested the insertion of two sets of products in the warehouses, one with 100 and the
other with 200 products. For each product set, we tested scenarios with 500, 1000 and 5000

orders. For each combination of warehouse, number of products and number of orders, five
instances were created, for a total of 3 ∗ 2 ∗ 3 ∗ 5 = 90 instances. In all these instances, we
used cells with only one position/level, as showed in Table 4.1.

Regarding the algorithm parameters, we deeply investigated two values: the maximum
number of IWI, used as stopping criteria, and the TSP thresholds described in Section 4.5.
Three values of maximum number of IWI were tested, and three different TSP thresholds. Ad-
ditionally, we tested the local search with and without prohibition of swaps between products
of different types. In this way, 18 algorithm parameter combinations were experimented.

After that, a set of 25 instances with higher number of products (400, 800, 1600) and
orders (2000,5000, 10000) were used to observe the algorithm behaviour and try to establish
a practical limit for its use. In this instance set, we used a single warehouse (W3), but changed
the number of levels in each cell in order to allow the storage of all the products. In this
way, instances with 400, 800 and 1600 products were respectively associated with warehouse
variants with 465, 833 and 1694 storage positions. It is important to highlight that the
warehouse configuration was identical in instances with the same number of products.

To test the algorithm capabilities in managing prohibition and isolation constraints, we
used a subset of the initial instances, using 3 variations to each combination of warehouse,
number of products and number of orders, for a total of 3∗2∗3∗3 = 54 instances. For each of
these 54 instances, we tested 5 prohibition and isolation constraints, for a total of 270 tests.

In all the instances mentioned above, the number of products by order was determined
following a Poisson distribution with average number of events equal to 6. The products
inside each order were defined following a uniform distribution, but without allowing the
same product to be requested twice in the same order.
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Figure 4.3: Layout of the warehouse W1

Figure 4.4: Layout of the warehouse W2

Figure 4.5: Layout of the warehouse W3

4.7 Results

As we described in the previous section, the tests were performed in three steps, the first
with a set of 90 instances without prohibition or isolation constraints, a second with a set of
25 instances with higher number of products and orders, and finally the third with a set of 270
instances, based on the first group of instances, but with prohibition and isolation constraints.
The algorithm was implemented in C++17 language, with the source code being compiled
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with -O3 flag. The tests were performed on a Dell Precision Tower 3620 computer with a
3.50GHz Intel Xeon E3-1245 processor and 32GB of RAM memory, running the Ubuntu 16.04
LTS operational system. All the executions were performed on a single thread, without any
significant concurrent process. In the next three sections, we present the results of the three
experiments.

4.7.1 Parameters evaluation on basic instances

The results obtained for the first instance set are presented in Tables 4.2 and 4.3. More
detailed results are provided in the appendix. Each line in this table represents the average of
the computational results with a specific algorithm parameter setting. In the detailed results,
each line represent the sum of five individual instances, except those in column “gain”, which
are the average of individual gains. In other words, in Tables 4.2 and 4.3 the column ”gain”
is an average of the average gains in each group of five instances, and the remaining columns
are an average of the sum of results in a group of five instances. In Table II, the results are
grouped by the TSP evaluation parameters, whereas in Table III they are grouped by IWI
value.

We start our analysis from the effect of the TSP evaluation parameters on the solution
value. As the constructive algorithm is not affected by these parameters, it provides always
the same initial solution to a given instance, but with a different objective function value, due
to the difference in the solution evaluation.

As expected, using exact evaluations (and better heuristics) in more routes leads to a
decrease in the objective function values. However, considering the initial solution value,
this variation is inferior to 5% in total from the most precise to the less precise evaluation,
which suggests that simple heuristics are sufficiently efficient to check the quality of a storage
assignment. This evidence is in accordance with what is stated in the literature and practised
in real scenarios, mainly by the pickers, that tend to follow the most intuitive and sub-
optimal routes (De Santis et al. (2018), Elbert et al. (2017)). However, the improvement on
evaluation precision is unequivocally counterbalanced by a significant run time increase if the
whole algorithm is considered. The total run time using the TSP(7,11) configuration is over
the double of the total run time using the TSP(5,9) configuration.

An interesting effect of the TSP evaluation parameter in the solution is the negative corre-
lation between the evaluation precision and the improvement obtained by the local search. In
other words, if we rise the number of routes that are evaluated by an exact method (or better
heuristics), we get less improvement over the greedy solution. A possible cause of this result
is the higher probability of a travel distance over-estimation when evaluating good quality
solutions if the evaluation precision is low. This could conduct the search to a region with
bad solutions, increasing the convergence time without improving the solution quality.

In the same sense, it is noticeable that an increase in the number of products and orders
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in the instances also reduces the gains over the initial solution. This is an expected result, as
it is harder to balance all picker route distances if there are more routes to balance and more
points to visit among the different routes.

When comparing the results of scenarios with the same evaluation parameters but different
IWI values, it is possible to notice that a higher IWI only slightly improves the average gains
over the initial solution (on average less than 0.7 percentage points increase for each two
more IWI), even with significantly higher run times. Among the hypotheses to explain this
behaviour, we can cite a bad performance of the perturbation method to escape from local
optima, a too quick convergence of the method to values close to an average local optimum,
the existence of too many local optima, or the existence of several regions of the solution
space with very similar characteristics causing repetitive searches.

It is interesting to notice that when comparing “type-free swap results” with “same-type
swap” results, the latter on average gets better solutions with a higher run time. We expect
that a more restricted swap could lead to a quick conversion and thus a worse solution. As the
differences between solutions are relatively small, while between run times are relevant, we
can suppose that the method, when using a more restricted local search, performs more but
smaller improvements. This explanation is compatible with concerns about meta-heuristic
parameter calibration, in which a developer tries to balance the size of intensification and
diversification steps in order to find a better algorithm performance.

Table 4.2: Computational results grouped by TSP evaluation parameters

Swap policy IWI TSP(5,9) TSP(6,10) TSP(7,11)
initial (m) final (m) time (s) gain (%) initial (m) final (m) time (s) gain (%) initial (m) final (m) time (s) gain (%)

Same-type
10 8377170 5037321 5194.14 43.34 8223513 5212871 5634.41 39.70 8020050 5654668 10394.04 32.10
8 8377170 5081859 4153.90 42.70 8223513 5238769 4956.94 39.19 8020050 5688999 8549.11 31.47
6 8377170 5127175 3414.91 41.88 8223513 5296696 3939.77 38.27 8020050 5745588 7598.40 30.85

Type-free
10 8377170 5122995 4329.97 42.26 8223513 5275617 5452.76 38.56 8020050 5716626 9292.56 31.20
8 8377170 5150287 3546.09 41.85 8223513 5297885 4465.60 38.21 8020050 5720474 7629.36 30.75
6 8377170 5179081 2944.77 41.39 8223513 5328058 3613.45 37.59 8020050 5766739 6124.49 30.18

Table 4.3: Computational results grouped by Iterations Without Improvement (IWI)

Swap policy TSP 10 IWI 8 IWI 6 IWI
initial final time (s) gain (%) initial final time (s) gain (%) initial final time (s) gain (%)

Same-type
(5, 9) 8377170 5037321 5194.14 43.34 8377170 5081859 4153.90 42.70 8377170 5127175 3414.91 41.88
(6, 10) 8223513 5212871 5634.41 39.70 8223513 5238769 4956.94 39.19 8223513 5296696 3939.77 38.27
(7, 11) 8020050 5654668 10394.04 32.10 8020050 5688999 8549.11 31.47 8020050 5745588 7598.40 30.85

Type-free
(5, 9) 8377170 5122995 4329.97 42.26 8377170 5150287 3546.09 41.85 8377170 5179081 2944.77 41.39
(6, 10) 8223513 5275617 5452.76 38.56 8223513 5297885 4465.60 38.21 8223513 5328058 3613.45 37.59
(7, 11) 8020050 5716626 9292.56 31.20 8020050 5720474 7629.36 30.75 8020050 5766739 6124.49 30.18

4.7.2 Large instances

To analyse the algorithm run time growth and also to check its efficiency in a large
warehouse, we performed the experiments summarised in Table 4.4. In this table, “initial”,
“final” and “time” represent the sum of values for five different instances, and ”gain” is an
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average of five instance gains. In these instances, there are no isolated types or prohibited
allocations and the warehouse is an expanded version of the warehouse W3, as described in
Section 4.6.

Table 4.4: Computational results on large instances. Parameters used: 8 IWI, TPS(7, 11)
.

ID ∥P∥ ∥O∥ initial final gain (%) time(s)
1 400 5000 20750075 17193737 17.14 33636.85
2 800 2000 8688385 7336701 15.55 35179.62
3 800 10000 44726480 37982957 15.08 223500.85
4 1600 2000 8613652 7592868 11.85 115812.40
5 1600 10000 45126739 38745007 14.14 831373.62

In these instances, the gain over the initial solution obtained by the search is between 11%

and 18%. This interval is far inferior to those observed in smaller instances, as expected, but
still relevant in a real life operation. The run time rises approximately in a linear way with
respect to the number of orders (6.37 times for instances with 800 products and 7.18 times
for instances with 1600 products), but very fast with respect to the number of products to
be allocated, getting to an average of 48 hours for instances with 1600 products.

An interesting result can be noticed when observing the initial solution value. While this
seems to be directly proportional to the number of orders (as more orders mean more routes),
it does not change with the number of products. This can be explained by the proportional
growth of warehouse capacity per area, which makes the average picking density to remain
similar, causing a similar route distances.

4.7.3 Instances with isolation and prohibition constraints

In Tables 4.5 and 4.6, we show the algorithm results for instances with isolation (both
tables) and allocation prohibition (second table) constraints. In Table 4.5, the block Isolation
1 refers to instances containing one type of weak isolation constraints, the block Isolation
2 refers to instances containing one type of weak isolation and one type of strong isolation
constraints, and finally block Isolation 3 has the same isolated types of block Isolation 2 but
with interchanged enforcement. In turn, in Table 4.6 the blocks Isolation 1 and Isolation 2
have the same isolation constraints of Table 4.5, but with allocation prohibitions.

Considering the results in Table 4.5, we can see that the penalty contribution in the initial
solution value on Isolation 1 block is less than 16% for all the instance groups, with an average
of 5.5%. In the other two blocks, however, the average contribution are 47.8% and 70.8%.

The first thing we can observe is a satisfactory improvement over the initial solution ob-
tained by the local search, although smaller than that observed in the previous results. In the
Isolation 3 block, this improvement is on average 7.1% and in the worst cases (where penalties
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are more relevant in initial solution) any improvement is observed. Nevertheless in instances
without hard isolation constraints, this metric rises to 19.4% and 15.1% in blocks Isolation
1 and Isolation 2, respectively. These results may suggest that if the constructive algorithm
does not handle well isolation constraints, then local search has problems in improving the
solution.

We notice that the local search reduces proportionally less the penalty value than the
overall objective function value, except in instances with 200 products in warehouse W3
(lines 16 to 18 of Table 4.5), suggesting that the method could be giving more relevance to
travel distance.

The average run time was smaller than one hour (or accumulated 10800 seconds in three
executions) for all the instance settings, except on setting on line 15 and Isolation 1. It
suggests that the method converges in an acceptable time even in more realistic and complex
mid-size instances.

Looking at the results in Table 4.6, we can notice how the initial solution value is similar for
the instances without prohibition constraints. Even with 15% to 30% of products presenting
some allocation prohibition in the shelf level the initial solutions values for these instances
were less than 2% higher or even lower than the values for instances without prohibition
constraints.

We can notice in this part of experiments that a solution probably will not change too
much in low to moderate levels of allocation prohibitions. This can happen for two main
reasons: products are assigned to locations close to that where it is forbidden to be, or the
differences between product demands is not too relevant and small perturbations are not
significant.

Table 4.5: Computational results for instances with isolation constraints but without alloca-
tion prohibitions. Abbreviations: I.P. = sum of initial penalties, F.P. = sum of final penalties,
G% = average percentage gain over initial objective function, P.G.% = average percentage
gain over initial penalties. Parameters used: 8 IWI, TPS(7, 11)

.

Id Isolation 1 Isolation 2 Isolation 3
init I.P. end F.P. G% P.G.% time (s) init I.P. end F.P. G% P.G.% time (s) init I.P. ind F. P. G% P.G.% time (s)

1 1203.2 140.1 651.7 96.3 45.8 31.0 905.3 1896.2 1032.7 1518.0 956.2 19.9 7.4 675.9 1883.9 1021.5 1536.5 950.1 18.5 7.0 512.4
2 2244.6 146.1 1331.0 123.0 40.7 15.1 1418.0 3564.7 1866.8 2916.2 1757.1 18.1 5.9 1560.0 3523.8 1815.7 2898.0 1723.7 17.8 5.1 1900.0
3 10672.8 145.2 6475.2 134.6 39.3 6.7 10084.3 16979.5 8388.1 14599.4 8360.5 14.0 0.3 5536.0 16922.1 8324.3 14387.5 8282.3 15.0 0.5 6539.9
4 1138.8 150.3 712.8 114.6 37.4 23.2 762.7 1820.9 1026.2 1562.7 986.3 14.2 3.9 717.8 1833.8 1039.8 1511.8 944.4 17.5 9.1 1203.9
5 2108.9 151.8 1400.3 118.4 33.6 21.8 2364.8 3438.8 1861.6 3022.9 1804.2 12.1 3.1 1252.3 3413.5 1831.6 2990.6 1727.2 12.4 5.7 1270.1
6 10001.6 166.0 6803.1 124.7 32.0 24.0 8425.0 16396.6 8396.5 14557.5 8349.1 11.2 0.6 6643.4 16331.5 8329.0 14547.2 8299.2 10.9 0.4 5918.2
7 1111.4 173.3 758.6 102.8 31.8 40.3 848.0 1708.8 1005.7 15115.7 954.7 11.5 5.1 1160.8 1723.2 1021.6 1523.6 946.6 11.6 7.4 965.6
8 2020.9 149.8 1514.2 115.4 25.1 22.0 1834.7 3244.8 1826.6 2968.8 1793.8 8.5 1.8 1453.5 3228.0 1811.3 2934.7 1731.6 9.1 4.4 2857.9
9 9661.7 174.0 7324.4 140.4 24.2 17.4 10952.3 15646.7 8380.0 14435.6 8354.0 7.7 0.3 9748.0 15621.0 8323.3 14367.3 8294.1 8.0 0.4 7730.5

10 1312.4 80.0 960.6 68.0 26.7 14.7 688.3 2179.6 1084.3 1701.9 868.3 22.0 20.1 700.2 3293.7 2868.2 3215.2 2810.6 2.4 2.0 75.9
11 2546.0 84.0 1905.6 70.0 25.1 16.0 1792.3 3670.7 1509.7 3071.6 1230.0 16.3 18.5 1825.2 6325.4 5469.0 6277.2 5423.2 0.8 0.8 143.3
12 12571.4 79.0 9296.7 76.0 26.0 3.3 9691.1 16241.7 5155.5 13580.0 5113.4 16.4 0.8 8602.0 31158.0 26838.0 31158.0 26838.0 0.0 0.0 293.9
13 1271.2 86.0 890.7 647.3 29.9 22.3 1238.5 2137.1 1087.9 1613.0 814.9 24.5 25.1 929.9 3259.9 2869.7 3213.9 2826.1 1.4 1.5 65.6
14 2440.0 81.4 1879.6 717.7 23.0 11.6 1662.9 3630.5 1546.4 2906.2 1246.8 20.0 19.4 2385.5 6277.5 5478.7 6252.9 5458.8 0.4 0.4 161.9
15 12124.6 80.9 8826.2 735.6 27.2 9.1 11249.2 15839.9 5216.2 13220.4 4990.1 16.5 4.3 10725.5 30824.2 26830.7 30824.2 26830.7 0.0 0.0 392.7
16 1302.8 105.6 1072.9 69.6 17.6 33.4 729.1 2134.0 1080.1 1827.0 884.9 14.3 18.0 697.6 3184.8 2856.5 3162.5 2831.9 0.7 0.9 67.7
17 2502.3 94.0 2076.6 70.8 17.0 23.3 1919.7 3627.5 1515.8 3161.0 1288.1 12.8 14.8 1843.3 6152.5 5476.0 6108.3 5430.1 0.7 0.8 284.0
18 12494.3 90.7 10200.0 75.6 18.4 14.9 10426.4 16047.1 5201.4 14278.5 4928.0 11.0 5.3 11685.1 30328.6 26848.6 30317.0 26835.6 0.0 0.1 569.8

88728.8 2178.3 64079.7 1710.2 28.9 19.4 76993 130205.2 57181.7 112452.2 54680.4 15.1 8.6 68142 185285.4 139053.6 177226.6 138184.3 7.1 2.6 30953
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Table 4.6: Computational results for instances with isolation and prohibition constraints.
Abbreviations: I.P. = sum of initial penalties, F.P. = sum of final penalties, G% = average
percentage gain over initial objective function, P.G.% = average percentage gain over initial
penalties. Indexes refer to input parameters like on Table 4.7 to Table 4.18. Parameters used:
8 IWI, TPS(7, 11)

Id W ∥P∥ ∥O∥ Isolation 1 Isolation 2
init I.P. end F.P. G% PG% time (s) init I.P. end F.P. G% P.G.% time (s)

1

100

w1
500 1215.9 153.1 675.4 112.8 44.32 25.38 829.45 1896.1 1032.2 1510.1 951.3 20.36 7.84 864.47

2 1000 2249.4 149.6 1290.2 95.6 42.63 35.43 2141.19 3563.4 1863.8 2932.8 1771.2 17.64 4.96 1498.90
3 5000 10675.9 147.7 6580.5 157.1 38.36 -6.53 8519.80 16979.2 8385.1 14538.6 8360.0 14.37 0.30 6359.05
4

w2
500 1151.9 162.8 721.7 128.3 37.33 20.93 783.01 1839.7 1059.7 1603.6 1025.6 12.82 3.15 609.02

5 1000 2112.3 155.1 1409.5 126.8 33.28 17.90 2041.65 3486.3 1932.1 3076.9 1857.5 11.77 3.90 1469.15
6 5000 9998.9 164.3 6829.0 157.9 31.70 2.89 9016.58 16665.4 8801.5 14881.2 8735.2 10.71 0.76 7166.63
7

w3
500 1113.6 175.4 755.2 109.8 32.19 36.99 1002.66 1725.8 1039.2 1554.1 1003.8 9.94 3.39 1207.71

8 1000 2020.9 149.8 1514.2 115.4 25.07 21.97 1833.82 3290.8 1897.1 3004.5 1865.1 8.70 1.73 1557.57
9 5000 9663.8 176.1 7334.3 140.1 24.10 19.00 10559.08 15888.2 8785.0 14723.9 8747.2 7.32 0.43 8692.53

10

200

w1
500 1314.7 83.0 979.6 79.0 25.48 4.87 845.45 2185.1 1089.8 1728.0 893.8 20.98 18.17 835.60

11 1000 2562.3 98.0 1899.8 72.0 25.83 26.33 2300.68 3670.8 1509.2 3066.6 1239.0 16.44 17.91 1867.37
12 5000 12625.6 154.6 9436.4 178.6 25.26 -25.94 8473.10 16241.8 5155.5 13499.5 5020.0 16.88 2.62 9276.24
13

w2
500 1276.2 90.9 919.2 75.2 27.97 14.48 764.10 2135.8 1087.9 1639.2 833.1 23.24 23.43 847.04

14 1000 2442.3 84.4 1868.8 71.6 23.47 15.01 2281.61 3631.7 1546.4 2981.6 1341.4 17.88 13.18 2036.78
15 5000 12134.7 88.1 8840.5 88.8 27.15 -0.59 12758.23 15836.8 5216.2 13157.2 4889.3 16.92 6.28 10916.91
16

w3
500 1293.7 98.1 1069.1 70.2 17.36 28.40 1322.95 2134.0 1080.1 1835.0 892.9 13.98 17.25 688.72

17 1000 2501.5 93.1 2068.9 73.0 17.29 21.15 2326.59 3625.4 1513.6 3167.8 1280.9 12.61 15.21 1597.07
18 5000 12497.3 91.4 10209.5 93.1 18.31 -2.27 10228.83 16047.1 5201.4 14284.9 4935.6 10.98 5.11 11593.53

Totals 88850.9 2315.8 64401.7 1945.4 28.7 14.2 78029 130843.2 58196.0 113185.7 55642.8 14.6 8.1 69084

4.8 Conclusion

In this chapter, we studied the Storage Location Assignment Problem with Prohibition
and Isolation Constraints, a generalisation of the classic Storage Location Problem in which
some products may need to be allocated in reserved positions and some other products can
not be assigned to specific locations. This problem was proposed in the context of a pharma-
ceutical logistic operator aiming at improving its performance and providing more flexibility
in defining warehouse layouts. Additionally, the work also described how to process the ware-
house input data, which can be useful in several other studies that, as this one, need to deal
with non-conventional warehouse layouts or for situations where design changes also need to
be evaluated.

We proposed an ILS method to solve the problem and we tested it on a large set of
instances to demonstrate its suitability in providing good solutions within an acceptable run
time. We could also notice that variations on the stopping criteria caused relevant changes in
the run time, but just slight changes in the solution quality. On the other hand, the variation
in the parameters related to the TSP solutions (to determine the pickers’ routes) proved to
be very influential in both run time and solution quality. Large instances were solved well
by the ILS algorithm, however with higher run times, with this rise strongly related to the
number of products to be allocated and less to the number of orders considered. Instances
with isolation and prohibition constraints presented lower improvements in the local search
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phase, but still relevant for commercial purposes.
For future researches, we suggest to investigate more deeply the influence of initial allo-

cation of strongly isolated types in the overall performance of the optimization method, as
well the possibility of guiding this allocation through user manual input. Investigating the
suitability of the method to more dynamic situations is also relevant, mainly when different
information are available for the orders. It could be interesting to create stronger strategies
to avoid route re-evaluation or discard non improving swaps, as this could reduce significantly
the run time and allow a broader search.
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Appendices

Detailed results of instances without prohibition and isolation
constraints

In this appendix, we provide the detailed results of the computational tests that we per-
formed. Tables 4.7 - 4.12 give the results that can be found in aggregated form in Table 4.2
of the paper. Similarly, Tables 4.13 - 4.18 give the results that can found in aggregated form
in Table 4.3.

Table 4.7: Computational results with 10 iterations without improvement and same type
swaps

Id ∥P∥ W ∥O∥ TSP(5,9) TSP(6,10) TSP(7,11)
initial final time (s) gain (%) initial final time (s) gain (%) initial final time (s) gain (%)

1

100

W1
500 1863122 643795 1416.91 65.42 1820373 759141 1232.90 58.26 1773048 875664 2334.21 50.57

2 1000 3619817 1787229 2152.33 50.51 3568509 1745007 3053.97 51.02 3490044 1964363 4578.46 43.62
3 5000 18264608 9093720 11529.61 50.21 17995734 9348413 9653.54 48.05 17546196 10418730 21562.78 40.62
4

W2
500 1738176 749821 1105.09 56.84 1698025 786442 1572.88 53.64 1649763 943287 2016.83 42.77

5 1000 3418249 1767552 2781.71 48.27 3352255 1858347 2994.79 44.54 3264205 2044617 5535.53 37.35
6 5000 17188079 9400950 10876.40 45.30 16867999 9704003 14055.28 42.47 16407861 10773500 27788.25 34.34
7

W3
500 1653207 863097 1332.10 47.80 1611516 916877 1981.55 43.10 1564028 1045144 2970.31 33.17

8 1000 3264462 2067380 2171.73 36.65 3198054 2103654 3013.66 34.20 3119300 2224897 6118.19 28.66
9 5000 16610035 10728080 13407.73 35.41 16266313 11176857 11322.93 31.29 15821210 11950470 22883.67 24.47

10

200

W1
500 2156216 1112431 1569.49 48.36 2121769 1183152 1439.20 44.16 2068296 1341081 2284.14 35.10

11 1000 4282403 2529056 2332.02 40.93 4206423 2611997 3125.52 37.85 4109578 2901679 4503.44 29.36
12 5000 21684669 13510348 11255.04 37.69 21332262 13882116 13439.19 34.92 20850055 15135223 21140.16 27.41
13

W2
500 2083847 1095096 1415.01 47.42 2036449 1160075 1879.71 43.01 1982033 1316481 2639.49 33.57

14 1000 4116914 2594961 2651.52 36.94 4033488 2664212 2762.17 33.93 3942651 2846162 5246.66 27.80
15 5000 20931512 13175500 11779.78 37.05 20552869 13633392 11590.95 33.66 20060073 14452568 23990.97 27.95
16

W3
500 2106403 1346994 1689.98 36.02 2060127 1451049 1622.29 29.54 2006669 1552207 3005.51 22.63

17 1000 4197221 2940923 2735.93 29.92 4109572 3060037 3389.02 25.51 4022267 3236041 4859.28 19.54
18 5000 21610121 15264839 11292.08 29.36 21191498 15786908 13289.82 25.50 20683618 16761904 23634.83 18.96

AVG(10 IWI) 8377170 5037321 5194.14 43.34 8223513 5212871 5634.41 39.70 8020050 5654668 10394.04 32.10

Table 4.8: Computational results with 8 iterations without improvement and same type swaps

Id ∥P∥ W ∥O∥ TSP(5,9) TSP(6,10) TSP(7,11)
initial final time (s) gain (%) initial final time (s) gain (%) initial final time (s) gain (%)

1

100

W1
500 1863122 658629 1121.38 64.63 1820373 761493 1144.76 58.13 1773048 904412 1593.26 48.95

2 1000 3619817 1787229 2062.77 50.51 3568509 1768931 2464.99 50.33 3490044 1975038 3834.99 43.31
3 5000 18264608 9156846 9124.42 49.86 17995734 9416788 8735.32 47.67 17546196 10545356 14915.26 39.90
4

W2
500 1738176 755739 963.26 56.49 1698025 822714 1047.40 51.52 1649763 968547 1382.24 41.26

5 1000 3418249 1784835 2377.88 47.77 3352255 1878072 2437.76 43.95 3264205 2069681 4040.82 36.59
6 5000 17188079 9548894 8343.91 44.44 16867999 9773424 12441.96 42.05 16407861 10907010 21758.31 33.52
7

W3
500 1653207 864876 1164.64 47.69 1611516 926984 1716.35 42.48 1564028 1050926 2400.94 32.80

8 1000 3264462 2069549 2010.25 36.58 3198054 2108461 2753.09 34.04 3119300 2234950 4917.18 28.33
9 5000 16610035 10840263 9452.44 34.74 16266313 11189512 10213.07 31.21 15821210 11980105 20399.12 24.28

10

200

W1
500 2156216 1154577 994.26 46.41 2121769 1197067 1201.78 43.50 2068296 1344773 2067.05 34.92

11 1000 4282403 2537949 2118.47 40.72 4206423 2611997 3263.97 37.85 4109578 2918427 3880.86 28.95
12 5000 21684669 13665592 8564.34 36.98 21332262 13897061 12357.61 34.85 20850055 15167752 18726.45 27.25
13

W2
500 2083847 1132826 1010.73 45.61 2036449 1175915 1476.57 42.24 1982033 1336864 2039.75 32.53

14 1000 4116914 2626841 2118.94 36.17 4033488 2675243 2459.03 33.66 3942651 2869019 4236.23 27.21
15 5000 20931512 13232150 10193.32 36.78 20552869 13711921 9467.74 33.28 20060073 14452568 23376.70 27.95
16

W3
500 2106403 1367616 1224.51 35.05 2060127 1470465 1257.29 28.59 2006669 1587418 1908.28 20.86

17 1000 4197221 2976128 2163.52 29.08 4109572 3092862 2552.12 24.72 4022267 3244747 3971.77 19.32
18 5000 21610121 15312919 9761.18 29.14 21191498 15818931 12234.08 25.35 20683618 16844392 18434.85 18.56

AVG(8 IWI) 8377170 5081859 4153.90 42.70 8223513 5238769 4956.94 39.19 8020050 5688999 8549.11 31.47
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Table 4.9: Computational results with 6 iterations without improvement and same type swaps

Id ∥P∥ W ∥O∥ TSP(5,9) TSP(6,10) TSP(7,11)
initial final time (s) gain (%) initial final time (s) gain (%) initial final time (s) gain (%)

1

100

W1
500 1863122 699210 714.78 62.45 1820373 779973 965.56 57.12 1773048 904412 1541.92 48.95

2 1000 3619817 1817946 1507.86 49.67 3568509 1777854 2183.66 50.08 3490044 1985514 3280.76 43.01
3 5000 18264608 9385337 5650.03 48.61 17995734 9453478 7527.82 47.46 17546196 10722394 11195.59 38.89
4

W2
500 1738176 774898 656.12 55.38 1698025 832506 869.10 50.95 1649763 975617 1229.57 40.83

5 1000 3418249 1803243 1916.47 47.23 3352255 1927597 1643.34 42.48 3264205 2105117 3103.03 35.50
6 5000 17188079 9615727 7623.22 44.05 16867999 9994437 8158.42 40.74 16407861 11057203 35739.39 32.61
7

W3
500 1653207 891332 791.83 46.09 1611516 963603 1043.42 40.20 1564028 1060652 1998.30 32.18

8 1000 3264462 2092301 1609.67 35.89 3198054 2130693 2133.27 33.35 3119300 2250560 3919.20 27.83
9 5000 16610035 10886623 8008.95 34.46 16266313 11319295 7146.49 30.41 15821210 12061439 14672.06 23.76

10

200

W1
500 2156216 1183044 752.91 45.10 2121769 1210797 985.81 42.85 2068296 1349210 1897.03 34.70

11 1000 4282403 2615873 1560.78 38.90 4206423 2706474 4511.81 35.61 4109578 2963492 2701.63 27.86
12 5000 21684669 13712575 7633.00 36.76 21332262 14138717 8103.87 33.72 20850055 15377782 12455.90 26.24
13

W2
500 2083847 1143118 908.24 45.12 2036449 1199252 1142.82 41.08 1982033 1365380 1407.08 31.10

14 1000 4116914 2657124 1689.36 35.42 4033488 2678389 2327.08 33.58 3942651 2873013 3906.89 27.11
15 5000 20931512 13279742 8853.02 36.56 20552869 13760341 8176.46 33.05 20060073 14627528 15227.61 27.08
16

W3
500 2106403 1376644 1094.63 34.62 2060127 1494706 931.68 27.42 2006669 1597795 3550.68 20.35

17 1000 4197221 2999593 1824.05 28.52 4109572 3141990 1713.22 23.51 4022267 3256739 3476.91 19.02
18 5000 21610121 15354824 8673.41 28.95 21191498 15830433 11352.04 25.30 20683618 16886730 15467.72 18.36

AVG(6 IWI) 8377170 5127175 3414.91 41.88 8223513 5296696 3939.77 38.27 8020050 5745588 7598.40 30.85

Table 4.10: Computational results with TSP(5,9) and same type swaps

Id ∥P∥ W ∥O∥ 10 IWI 8 IWI 6 IWI
initial final time (s) gain (%) initial final time (s) gain (%) initial final time (s) gain (%)

1

100

W1
500 1863122 643795 1416.91 65.42 1863122 658629 1121.38 64.63 1863122 699210 714.78 62.45

2 1000 3619817 1787229 2152.33 50.51 3619817 1787229 2062.77 50.51 3619817 1817946 1507.86 49.67
3 5000 18264608 9093720 11529.61 50.21 18264608 9156846 9124.42 49.86 18264608 9385337 5650.03 48.61
4

W2
500 1738176 749821 1105.09 56.84 1738176 755739 963.26 56.49 1738176 774898 656.12 55.38

5 1000 3418249 1767552 2781.71 48.27 3418249 1784835 2377.88 47.77 3418249 1803243 1916.47 47.23
6 5000 17188079 9400950 10876.40 45.30 17188079 9548894 8343.91 44.44 17188079 9615727 7623.22 44.05
7

W3
500 1653207 863097 1332.10 47.80 1653207 864876 1164.64 47.69 1653207 891332 791.83 46.09

8 1000 3264462 2067380 2171.73 36.65 3264462 2069549 2010.25 36.58 3264462 2092301 1609.67 35.89
9 5000 16602803 10728080 13407.73 35.41 16610035 10840263 9452.44 34.74 16610035 10886623 8008.95 34.46

10

200

W1
500 2156216 1112431 1569.49 48.36 2156216 1154577 994.26 46.41 2156216 1183044 752.91 45.10

11 1000 4282403 2529056 2332.02 40.93 4282403 2537949 2118.47 40.72 4282403 2615873 1560.78 38.90
12 5000 21684669 13510348 11255.04 37.69 21684669 13665592 8564.34 36.98 21684669 13712575 7633.00 36.76
13

W2
500 2083847 1095096 1415.01 47.42 2083847 1132826 1010.73 45.61 2083847 1143118 908.24 45.12

14 1000 4116914 2594961 2651.52 36.94 4116914 2626841 2118.94 36.17 4116914 2657124 1689.36 35.42
15 5000 20931512 13175500 11779.78 37.05 20931512 13232150 10193.32 36.78 20931512 13279742 8853.02 36.56
16

W3
500 2106403 1346994 1689.98 36.02 2106403 1367616 1224.51 35.05 2106403 1376644 1094.63 34.62

17 1000 4197221 2940923 2735.93 29.92 4197221 2976128 2163.52 29.08 4197221 2999593 1824.05 28.52
18 5000 21610121 15264839 11292.08 29.36 21610121 15312919 9761.18 29.14 21610121 15354824 8673.41 28.95

AVG(TSP(5,9)) 8377170 5037321 5194.14 43.34 8377170 5081859 4153.90 42.70 8377170 5127175 3414.91 41.88



4.9. Bibliography 84

Table 4.11: Computational results with TSP(6,10) and same type swaps

Id ∥P∥ W ∥O∥ 10 IWI 8 IWI 6 IWI
initial final time (s) gain (%) initial final time (s) gain (%) initial final time (s) gain (%)

1

100

W1
500 1820373 759141 1232.90 58.26 1820373 761493 1144.76 58.13 1820373 779973 965.56 57.12

2 1000 3568509 1745007 3053.97 51.02 3568509 1768931 2464.99 50.33 3568509 1777854 2183.66 50.08
3 5000 17995734 9348413 9653.54 48.05 17995734 9416788 8735.32 47.67 17995734 9453478 7527.82 47.46
4

W2
500 1698025 786442 1572.88 53.64 1698025 822714 1047.40 51.52 1698025 832506 869.10 50.95

5 1000 3352255 1858347 2994.79 44.54 3352255 1878072 2437.76 43.95 3352255 1927597 1643.34 42.48
6 5000 16867999 9704003 14055.28 42.47 16867999 9773424 12441.96 42.05 16867999 9994437 8158.42 40.74
7

W3
500 1611516 916877 1981.55 43.10 1611516 926984 1716.35 42.48 1611516 963603 1043.42 40.20

8 1000 3198054 2103654 3013.66 34.20 3198054 2108461 2753.09 34.04 3198054 2130693 2133.27 33.35
9 5000 16266313 11176857 11322.93 31.29 16266313 11189512 10213.07 31.21 16266313 11319295 7146.49 30.41

10

200

W1
500 2121769 1183152 1439.20 44.16 2121769 1197067 1201.78 43.50 2121769 1210797 985.81 42.85

11 1000 4206423 2611997 3125.52 37.85 4206423 2611997 3263.97 37.85 4206423 2706474 4511.81 35.61
12 5000 21332262 13882116 13439.19 34.92 21332262 13897061 12357.61 34.85 21332262 14138717 8103.87 33.72
13

W2
500 2036449 1160075 1879.71 43.01 2036449 1175915 1476.57 42.24 2036449 1199252 1142.82 41.08

14 1000 4033488 2664212 2762.17 33.93 4033488 2675243 2459.03 33.66 4033488 2678389 2327.08 33.58
15 5000 20552869 13633392 11590.95 33.66 20552869 13711921 9467.74 33.28 20552869 13760341 8176.46 33.05
16

W3
500 2060127 1451049 1622.29 29.54 2060127 1470465 1257.29 28.59 2060127 1494706 931.68 27.42

17 1000 4109572 3060037 3389.02 25.51 4109572 3092862 2552.12 24.72 4109572 3141990 1713.22 23.51
18 5000 21191498 15786908 13289.82 25.50 21191498 15818931 12234.08 25.35 21191498 15830433 11352.04 25.30

AVG(TSP(6,10)) 8223513 5212871 5634.41 39.70 8223513 5238769 4956.94 39.19 8223513 5296696 3939.77 38.27

Table 4.12: Computational results with TSP(7,11) and same type swaps

Id ∥P∥ W ∥O∥ 10 IWI 8 IWI 6 IWI
initial final time (s) gain (%) initial final time (s) gain (%) initial final time (s) gain (%)

1

100

W1
500 1773048 875664 2334.21 50.57 1773048 904412 1593.26 48.95 1773048 904412 1541.92 48.95

2 1000 3490044 1964363 4578.46 43.62 3490044 1975038 3834.99 43.31 3490044 1985514 3280.76 43.01
3 5000 17546196 10418730 21562.78 40.62 17546196 10545356 14915.26 39.90 17546196 10722394 11195.59 38.89
4

W2
500 1649763 943287 2016.83 42.77 1649763 968547 1382.24 41.26 1649763 975617 1229.57 40.83

5 1000 3264205 2044617 5535.53 37.35 3264205 2069681 4040.82 36.59 3264205 2105117 3103.03 35.50
6 5000 16407861 10773500 27788.25 34.34 16407861 10907010 21758.31 33.52 16407861 11057203 35739.39 32.61
7

W3
500 1564028 1045144 2970.31 33.17 1564028 1050926 2400.94 32.80 1564028 1060652 1998.30 32.18

8 1000 3119300 2224897 6118.19 28.66 3119300 2234950 4917.18 28.33 3119300 2250560 3919.20 27.83
9 5000 15821210 11950470 22883.67 24.47 15821210 11980105 20399.12 24.28 15821210 12061439 14672.06 23.76

10

200

W1
500 2068296 1341081 2284.14 35.10 2068296 1344773 2067.05 34.92 2068296 1349210 1897.03 34.70

11 1000 4109578 2901679 4503.44 29.36 4109578 2918427 3880.86 28.95 4109578 2963492 2701.63 27.86
12 5000 20850055 15135223 21140.16 27.41 20850055 15167752 18726.45 27.25 20850055 15377782 12455.90 26.24
13

W2
500 1982033 1316481 2639.49 33.57 1982033 1336864 2039.75 32.53 1982033 1365380 1407.08 31.10

14 1000 3942651 2846162 5246.66 27.80 3942651 2869019 4236.23 27.21 3942651 2873013 3906.89 27.11
15 5000 20060073 14452568 23990.97 27.95 20060073 14452568 23376.70 27.95 20060073 14627528 15227.61 27.08
16

W3
500 2006669 1552207 3005.51 22.63 2006669 1587418 1908.28 20.86 2006669 1597795 3550.68 20.35

17 1000 4022267 3236041 4859.28 19.54 4022267 3244747 3971.77 19.32 4022267 3256739 3476.91 19.02
18 5000 20683618 16761904 23634.83 18.96 20683618 16844392 18434.85 18.56 20683618 16886730 15467.72 18.36

AVG(TSP(7,11)) 8020050 5654668 10394.04 32.10 8020050 5688999 8549.11 31.47 8020050 5745588 7598.40 30.85
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Table 4.13: Computational results with 10 iterations without improvement and type-free
swaps

Id ∥P∥ W ∥O∥ TSP(5,9) TSP(6,10) TSP(7,11)
initial final time (s) gain (%) initial final time (s) gain (%) initial final time (s) gain (%)

1

100

W1
500 1863122 688460 1049.17 63.01 1820373 779120 1285.88 57.16 1773048 910452 2120.97 48.61

2 1000 3619817 1791275 2058.80 50.41 3568509 1830061 2286.49 48.64 3490044 1995489 4621.97 42.73
3 5000 18264608 9419606 8949.95 48.43 17995734 9521883 10266.15 47.08 17546196 10637039 17390.73 39.37
4

W2
500 1738176 761293 1182.55 56.15 1698025 833373 1123.95 50.89 1649763 965330 1967.86 41.45

5 1000 3418249 1821434 2292.24 46.70 3352255 1864768 3125.35 44.35 3264205 2068291 5273.02 36.63
6 5000 17188079 9703878 8064.67 43.54 16867999 10005262 10982.35 40.68 16407861 11023260 19733.38 32.81
7

W3
500 1653207 878658 1273.18 46.85 1611516 955374 1456.05 40.71 1564028 1050139 3185.57 32.85

8 1000 3264462 2051631 2597.06 37.13 3198054 2122762 2581.12 33.60 3119300 2235194 5954.34 28.32
9 5000 16610035 10919314 9764.56 34.26 16266313 11206128 13856.15 31.11 15821210 12033240 22204.77 23.94

10

200

W1
500 2156216 1163102 1126.40 46.00 2121769 1225737 1209.77 42.12 2068296 1363992 2068.95 33.98

11 1000 4282403 2554383 1918.18 40.34 4206423 2678907 2511.89 36.26 4109578 2919459 4903.96 28.93
12 5000 21684669 13678088 9767.57 36.92 21332262 14047837 11584.34 34.14 20850055 15215309 20532.95 27.02
13

W2
500 2083847 1119589 1235.36 46.25 2036449 1194563 1814.90 41.31 1982033 1348216 2074.76 31.96

14 1000 4116914 2632998 1944.55 36.01 4033488 2678879 3312.09 33.56 3942651 2881494 4646.65 26.90
15 5000 20931512 13343452 9830.26 36.25 20552869 13555181 14102.51 34.05 20060073 14611072 19638.07 27.16
16

W3
500 2106403 1384837 1464.09 34.22 2060127 1458611 1472.43 29.17 2006669 1585810 2082.30 20.94

17 1000 4197221 2970750 2209.75 29.20 4109572 3110259 2214.39 24.29 4022267 3251472 4276.77 19.14
18 5000 21610121 15331165 11211.12 29.06 21191498 15892401 12963.94 25.01 20683618 16804009 24589.13 18.76

AVG(10 IWI) 8377170 5122995 4329.97 42.26 8223513 5275617 5452.76 38.56 8020050 5716626 9292.56 31.20

Table 4.14: Computational results with 8 iterations without improvement and type-free swaps

Id ∥P∥ W ∥O∥ TSP(5,9) TSP(6,10) TSP(7,11)
initial final time (s) gain (%) initial final time (s) gain (%) initial final time (s) gain (%)

1

100

W1
500 1863122 703451 753.66 62.21 1820373 795519 963.65 56.26 1773048 917213 1546.85 48.24

2 1000 3619817 1801145 1794.57 50.14 3568509 1830061 2199.38 48.64 3490044 2009532 3751.49 42.33
3 5000 18264608 9500498 6447.41 47.98 17995734 9569267 8104.84 46.82 17546196 10647035 15741.41 39.32
4

W2
500 1738176 773024 1035.01 55.47 1698025 835486 1013.45 50.77 1649763 983667 1313.70 40.34

5 1000 3418249 1823832 2058.66 46.63 3352255 1903942 2249.08 43.18 3264205 2100007 3692.80 35.66
6 5000 17188079 9716818 7313.14 43.46 16867999 10071013 8304.96 40.29 16407861 11114358 14207.07 32.26
7

W3
500 1653207 901207 932.26 45.49 1611516 959071 1115.10 40.48 1564028 1076160 1811.56 31.19

8 1000 3264462 2074976 1972.30 36.42 3198054 2123482 2475.20 33.58 3119300 2263067 4261.11 27.43
9 5000 16610035 10973259 7614.82 33.93 16266313 11231579 9946.34 30.95 15821210 12042125 20140.67 23.89

10

200

W1
500 2156216 1175430 914.97 45.42 2121769 1234783 1012.59 41.70 2068296 1377972 1619.87 33.30

11 1000 4282403 2554383 1855.29 40.34 4206423 2686891 2252.90 36.07 4109578 2960831 3249.35 27.93
12 5000 21684669 13833241 7361.23 36.21 21332262 14118268 9570.55 33.81 20850055 15215309 19704.13 27.02
13

W2
500 2083847 1124095 1134.20 46.03 2036449 1208866 1381.51 40.61 1982033 1353051 4041.15 31.72

14 1000 4116914 2632998 1865.37 36.01 4033488 2716272 2272.37 32.64 3942651 2888965 4256.31 26.71
15 5000 20931512 13394442 7716.01 36.01 20552869 13575695 13123.20 33.95 20060073 14654508 16789.39 26.95
16

W3
500 2106403 1397642 1163.73 33.61 2060127 1459944 1377.38 29.10 2006669 1600855 1601.69 20.20

17 1000 4197221 2979038 1914.61 29.00 4109572 3117649 1943.11 24.11 4022267 3268721 2720.52 18.72
18 5000 21610121 15345678 9982.30 28.99 21191498 15924142 11075.14 24.86 20683618 16495153 16879.43 20.25

AVG(8 IWI) 8377170 5150287 3546.09 41.85 8223513 5297885 4465.60 38.21 8020050 5720474 7629.36 30.75
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Table 4.15: Computational results with 6 iterations without improvement and type-free swaps

Id ∥P∥ W ∥O∥ TSP(5,9) TSP(6,10) TSP(7,11)
initial final time (s) gain (%) initial final time (s) gain (%) initial final time (s) gain (%)

1

100

W1
500 1863122 710041 615.43 61.86 1820373 802493 798.98 55.88 1773048 921284 1381.87 48.01

2 1000 3619817 1827270 1354.14 49.42 3568509 1846916 1695.58 48.16 3490044 2051297 2310.25 41.14
3 5000 18264608 9500498 6145.85 47.98 17995734 9574910 7382.33 46.79 17546196 10647035 15088.98 39.32
4

W2
500 1738176 782645 802.19 54.92 1698025 837863 918.01 50.63 1649763 983667 1250.36 40.34

5 1000 3418249 1838643 1585.54 46.19 3352255 1929867 1776.16 42.41 3264205 2108767 3025.33 35.39
6 5000 17188079 9805776 5626.22 42.95 16867999 10075126 7496.81 40.27 16407861 11126325 12614.12 32.18
7

W3
500 1653207 904109 810.99 45.31 1611516 959071 1047.57 40.48 1564028 1086747 1309.46 30.51

8 1000 3264462 2096514 1685.32 35.76 3198054 2151665 1872.93 32.70 3119300 2275998 3340.04 27.02
9 5000 16610035 11071035 6152.08 33.35 16266313 11327960 7705.81 30.36 15821210 12114603 13785.32 23.43

10

200

W1
500 2156216 1201820 616.52 44.20 2121769 1266760 610.72 40.18 2068296 1397783 1161.11 32.34

11 1000 4282403 2568280 1559.54 40.01 4206423 2734677 1580.81 34.95 4109578 2982607 2353.65 27.40
12 5000 21684669 13910569 6404.63 35.85 21332262 14133159 8863.95 33.75 20850055 15310350 15055.44 26.57
13

W2
500 2083847 1136748 880.90 45.42 2036449 1276315 960.40 37.30 1982033 1371078 1379.46 30.81

14 1000 4116914 2654296 1548.63 35.49 4033488 2721778 2029.19 32.50 3942651 2953971 2873.39 25.06
15 5000 20931512 13394442 7321.53 36.01 20552869 13697250 8960.95 33.35 20060073 14691942 14202.45 26.76
16

W3
500 2106403 1412356 963.22 32.92 2060127 1480661 1045.72 28.10 2006669 1606961 1345.33 19.89

17 1000 4197221 2989301 1616.41 28.76 4109572 3117649 1837.96 24.11 4022267 3269457 2422.04 18.70
18 5000 21610121 15419114 7316.72 28.65 21191498 15970927 8458.13 24.64 20683618 16901426 15342.22 18.29

AVG(6 IWI) 8377170 5179081 2944.77 41.39 8223513 5328058 3613.45 37.59 8020050 5766739 6124.49 30.18

Table 4.16: Computational results with TSP(5,9) and type-free swaps

Id ∥P∥ W ∥O∥ 10 IWI 8 IWI 6 IWI
initial final time (s) gain (%) initial final time (s) gain (%) initial final time (s) gain (%)

1

100

W1
500 1863122 688460 1049.17 63.01 1863122 703451 753.66 62.21 1863122 710041 615.43 61.86

2 1000 3619817 1791275 2058.80 50.41 3619817 1801145 1794.57 50.14 3619817 1827270 1354.14 49.42
3 5000 18264608 9419606 8949.95 48.43 18264608 9500498 6447.41 47.98 18264608 9500498 6145.85 47.98
4

W2
500 1738176 761293 1182.55 56.15 1738176 773024 1035.01 55.47 1738176 782645 802.19 54.92

5 1000 3418249 1821434 2292.24 46.70 3418249 1823832 2058.66 46.63 3418249 1838643 1585.54 46.19
6 5000 17188079 9703878 8064.67 43.54 17188079 9716818 7313.14 43.46 17188079 9805776 5626.22 42.95
7

W3
500 1653207 878658 1273.18 46.85 1653207 901207 932.26 45.49 1653207 904109 810.99 45.31

8 1000 3264462 2051631 2597.06 37.13 3264462 2074976 1972.30 36.42 3264462 2096514 1685.32 35.76
9 5000 16610035 10919314 9764.56 34.26 16610035 10973259 7614.82 33.93 16610035 11071035 6152.08 33.35

10

200

W1
500 2156216 1163102 1126.40 46.00 2156216 1175430 914.97 45.42 2156216 1201820 616.52 44.20

11 1000 4282403 2554383 1918.18 40.34 4282403 2554383 1855.29 40.34 4282403 2568280 1559.54 40.01
12 5000 21684669 13678088 9767.57 36.92 21684669 13833241 7361.23 36.21 21684669 13910569 6404.63 35.85
13

W2
500 2083847 1119589 1235.36 46.25 2083847 1124095 1134.20 46.03 2083847 1136748 880.90 45.42

14 1000 4116914 2632998 1944.55 36.01 4116914 2632998 1865.37 36.01 4116914 2654296 1548.63 35.49
15 5000 20931512 13343452 9830.26 36.25 20931512 13394442 7716.01 36.01 20931512 13394442 7321.53 36.01
16

W3
500 2106403 1384837 1464.09 34.22 2106403 1397642 1163.73 33.61 2106403 1412356 963.22 32.92

17 1000 4197221 2970750 2209.75 29.20 4197221 2979038 1914.61 29.00 4197221 2989301 1616.41 28.76
18 5000 21610121 15331165 11211.12 29.06 21610121 15345678 9982.30 28.99 21610121 15419114 7316.72 28.65

AVG(TSP(5,9)) 8377170 5122995 4329.97 42.26 8377170 5150287 3546.09 41.85 8377170 5179081 2944.77 41.39
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Table 4.17: Computational results with TSP(6,10) and type-free swaps

Id ∥P∥ W ∥O∥ 10 IWI 8 IWI 6 IWI
initial final time (s) gain (%) initial final time (s) gain (%) initial final time (s) gain (%)

1

100

W1
500 1820373 779120 1285.88 57.16 1820373 795519 963.65 56.26 1820373 802493 798.98 55.88

2 1000 3568509 1830061 2286.49 48.64 3568509 1830061 2199.38 48.64 3568509 1846916 1695.58 48.16
3 5000 17995734 9521883 10266.15 47.08 17995734 9569267 8104.84 46.82 17995734 9574910 7382.33 46.79
4

W2
500 1698025 833373 1123.95 50.89 1698025 835486 1013.45 50.77 1698025 837863 918.01 50.63

5 1000 3352255 1864768 3125.35 44.35 3352255 1903942 2249.08 43.18 3352255 1929867 1776.16 42.41
6 5000 16867999 10005262 10982.35 40.68 16867999 10071013 8304.96 40.29 16867999 10075126 7496.81 40.27
7

W3
500 1611516 955374 1456.05 40.71 1611516 959071 1115.10 40.48 1611516 959071 1047.57 40.48

8 1000 3198054 2122762 2581.12 33.60 3198054 2123482 2475.20 33.58 3198054 2151665 1872.93 32.70
9 5000 16266313 11206128 13856.15 31.11 16266313 11231579 9946.34 30.95 16266313 11327960 7705.81 30.36

10

200

W1
500 2121769 1225737 1209.77 42.12 2121769 1234783 1012.59 41.70 2121769 1266760 610.72 40.18

11 1000 4206423 2678907 2511.89 36.26 4206423 2686891 2252.90 36.07 4206423 2734677 1580.81 34.95
12 5000 21332262 14047837 11584.34 34.14 21332262 14118268 9570.55 33.81 21332262 14133159 8863.95 33.75
13

W2
500 2036449 1194563 1814.90 41.31 2036449 1208866 1381.51 40.61 2036449 1276315 960.40 37.30

14 1000 4033488 2678879 3312.09 33.56 4033488 2716272 2272.37 32.64 4033488 2721778 2029.19 32.50
15 5000 20552869 13555181 14102.51 34.05 20552869 13575695 13123.20 33.95 20552869 13697250 8960.95 33.35
16

W3
500 2060127 1458611 1472.43 29.17 2060127 1459944 1377.38 29.10 2060127 1480661 1045.72 28.10

17 1000 4109572 3110259 2214.39 24.29 4109572 3117649 1943.11 24.11 4109572 3117649 1837.96 24.11
18 5000 21191498 15892401 12963.94 25.01 21191498 15924142 11075.14 24.86 21191498 15970927 8458.13 24.64

AVG(TSP(6,10)) 8223513 5275617 5452.76 38.56 8223513 5297885 4465.60 38.21 8223513 5328058 3613.45 37.59

Table 4.18: Computational results with TSP(7,11) and type-free swaps

Id ∥P∥ W ∥O∥ 10 IWI 8 IWI 6 IWI
initial (m) final (m) time (s) gain (%) initial (m) final (m) time (s) gain (%) initial (m) final (m) time (s) gain (%)

1

100

W1
500 1773048 910452 2120.97 48.61 1773048 917213 1546.85 48.24 1773048 921284 1381.87 48.01

2 1000 3490044 1995489 4621.97 42.73 3490044 2009532 3751.49 42.33 3490044 2051297 2310.25 41.14
3 5000 17546196 10637039 17390.73 39.37 17546196 10647035 15741.41 39.32 17546196 10647035 15088.98 39.32
4

W2
500 1649763 965330 1967.86 41.45 1649763 983667 1313.70 40.34 1649763 983667 1250.36 40.34

5 1000 3264205 2068291 5273.02 36.63 3264205 2100007 3692.80 35.66 3264205 2108767 3025.33 35.39
6 5000 16407861 11023260 19733.38 32.81 16407861 11114358 14207.07 32.26 16407861 11126325 12614.12 32.18
7

W3
500 1564028 1050139 3185.57 32.85 1564028 1076160 1811.56 31.19 1564028 1086747 1309.46 30.51

8 1000 3119300 2235194 5954.34 28.32 3119300 2263067 4261.11 27.43 3119300 2275998 3340.04 27.02
9 5000 15821210 12033240 22204.77 23.94 15821210 12042125 20140.67 23.89 15821210 12114603 13785.32 23.43

10

200

W1
500 2068296 1363992 2068.95 33.98 2068296 1377972 1619.87 33.30 2068296 1397783 1161.11 32.34

11 1000 4109578 2919459 4903.96 28.93 4109578 2960831 3249.35 27.93 4109578 2982607 2353.65 27.40
12 5000 20850055 15215309 20532.95 27.02 20850055 15215309 19704.13 27.02 20850055 15310350 15055.44 26.57
13

W2
500 1982033 1348216 2074.76 31.96 1982033 1353051 4041.15 31.72 1982033 1371078 1379.46 30.81

14 1000 3942651 2881494 4646.65 26.90 3942651 2888965 4256.31 26.71 3942651 2953971 2873.39 25.06
15 5000 20060073 14611072 19638.07 27.16 20060073 14654508 16789.39 26.95 20060073 14691942 14202.45 26.76
16

W3
500 2006669 1585810 2082.30 20.94 2006669 1600855 1601.69 20.20 2006669 1606961 1345.33 19.89

17 1000 4022267 3251472 4276.77 19.14 4022267 3268721 2720.52 18.72 4022267 3269457 2422.04 18.70
18 5000 20683618 16804009 24589.13 18.76 20683618 16495153 16879.43 20.25 20683618 16901426 15342.22 18.29

AVG(TSP(7,11)) 8020050 5716626 9292.56 31.20 8020050 5720474 7629.36 30.75 8020050 5766739 6124.49 30.18



Conclusion

Planning the storage and distribution of pharmaceutical products in large scale is a hard
task, even to the most experienced operators. In this thesis, we presented a decision support
system to help improve this activity.

As we showed, the software was created following the guidelines provided by the com-
pany. We created a web application with a friendly interface and being accessible through
a standard internet browser in which it is possible to input problem data manually or using
spreadsheets, visualize and validate this input, call the optimization or analysis procedures
and then visualize and export the results. To solve the delivery routing and the vehicle/driver
assignment problems, we proposed a two-level method, in which the first part is a heuristic
procedure and the second uses a mathematical model. By turn, to solve the storage assign-
ment problem we proposed a new warehouse layout representation and processing, which was
used as initial step of an ILS algorithm.

The system development and implementation in the company started with this thesis, but
it will certainly be continued in the near future. Currently, vehicle routing and truck/driver
assignment modules are being actively used in the company operation. The storage alloca-
tion module is in homologation phasis and the last module, that manages warehouse picker
schedules, is close to be concluded.

In the next steps, the main objectives are: (a) improving the software integration to make
it able to have an automatic communication with other systems already used in the company;
(b) increasing robustness and scalability capacity; (c) inserting new optimization modules
and allow more custom settings in the modules already in use and (d) creating more detailed
and interative reports, to enable an even better solution evalution.

Among the scientific contributions that can emerge with advance of this work, we highlight
the study of methods to solve storage allocation problem considering all the definitions and
constraints presented in this thesis. This problem represents a major challenge to Operations
Research, once the effects of warehouse layouts, demands flutuations and allocation or picker
routing policies are complex to be evaluated and costly to be adopted or reversed in real life.
We believe that a robust solution to this problem can bring a framework to several related
problems described in the literature. Considering the other modules, we can suggest a closer
investigation of the effects of labour legislation and workers performance on the results.
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Appendix A

Solution methods for scheduling
problems with sequence-dependent
deterioration and maintenance
events

In this work, we study the problem of scheduling jobs and maintenance activities on a
set of unrelated parallel machines, by considering that the processing time of a job increases
according to a deterioration factor that depends both on the machine and on the set of jobs
the machine has processed since its last maintenance. The objective we consider is to minimize
the makespan. We introduce four mixed integer linear programming models, two of which
using big-M constraints and the other two using an exponential number of variables. We also
propose an iterated local search metaheuristic to tackle large size instances and we provide
empirical evidence of the performance of the proposed approaches by means of extensive
computational experiments.

A.1 Introduction

Fatigue and deterioration might severely affect human and machine performances, causing
an increase in the number of errors they make, in the quantity of resources they waste, or in
the processing time of the jobs they perform. In order to alleviate this issue, work stops or
maintenance events can be scheduled, so as to recover the full productivity of the agent and
improve the overall performance of the system.

In this paper, we deal with the problem of scheduling jobs and maintenance activities on
a set of unrelated parallel machines, where the processing time of each job on a given machine
depends on the initial processing time of the job on the machine (i.e., its processing time if
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the machine was working at full performance) and on the deterioration level of the machine.
The machines are not identical, which means that a job may have two different processing
times and deterioration factors on two different machines. The duration of a maintenance
also depends on the machine on which it is performed, but it is not impacted by the current
deterioration level of the machine. The objective is to find a feasible schedule in which all
jobs are processed and the makespan (i.e., the last completion time of a job) is minimized.
This type of problems occurs, for example, in construction industry, where the difficulty of
a given job impacts the workers’ level of tiredness and thus increases the time they need to
accomplish subsequent jobs, and in the cutting industry, where the hardness of a material
deteriorates the cutting tools and increases the time required to cut other materials (see Ruiz-
Torres et al. (2017)). In both cases, a short time in which the agent is not operating (such as
a break for the worker or a maintenance operation for the cutting tools) is enough to restore
full productivity.

In terms of contributions, we propose a linearization of the Mixed Integer Non-Linear
Programming (MINLP) model originally proposed by Ruiz-Torres et al. (2017) and three
additional Mixed Integer Linear Programming (MILP) models: an improvement of our first
model that significantly reduces symmetry, a model based on the classical set covering for-
mulation, and a model inspired by the arc flow formulation by Valério de Carvalho (1999).
Our resulting models can be solved by invoking a standard MILP solver and obtain optimal
solutions for small size instances. For larger instances, we propose a metaheuristic procedure
based on the concept of Iterated Local Search (ILS). We show, trough extensive computa-
tional experiments, that we can obtain good quality solutions in a few seconds for a variety of
instances, considering a large range of deterioration rates, processing times, and maintenance
times.

The remainder of the paper is organised as follows. Section A.2 provides a literature
review on scheduling problems with deterioration and maintenance activities. We formally
describe our problem in Section A.3, and we introduce the mathematical models in Section
A.4. The ILS is presented in Section A.5. The outcome of extensive computational exper-
iments assessing the quality of our approaches is reported in Section A.6. Finally, we draw
some conclusions and discuss interesting future research directions in Section A.7.

A.2 Literature review

The literature on scheduling problems with deterioration can be split into two main groups,
according to how the deterioration is estimated. The first group focuses on job deterioration
and uses the paradigm that the jobs processed at a later stage require an additional time
with respect to the jobs processed at an early stage (e.g, due to some physical properties).
In such a case, we adopt the term time-dependent deterioration. The second group focuses
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on machine deterioration and adopts the paradigm that processing a job deteriorates some
components of the machine, and this makes the processing time of subsequent jobs longer. In
such a case, we adopt the term sequence-dependent deterioration.

Scheduling problems with time-dependent deterioration have been investigated since the
late Eighties. To the best of our knowledge, the first study was presented by Gupta and Gupta
(1988), and focused on a single machine problem in which the duration of a job depends on
its starting time. The authors mentioned relevant applications in chemical and metallurgical
processes, where the temperature of the material cools down if it is not used immediately,
requiring a longer time to be processed. This seminal study was followed in the next years
by Kunnathur and Gupta (1990), who proposed algorithms based on dynamic programming
and branch-and-bound, by Browne and Yechiali (1990), who analyzed the effects of different
deterioration schemes and derived optimal scheduling policies that minimize either the ex-
pected makespan or its variance, by Mosheiov (1991, 1994, 1996), who outlined theoretical
properties on the optimal job sequence, and by Kubiak and van de Velde (1998), who studied
the case in which the supplementary time caused by deterioration is bounded.

The problem where multiple parallel machines are available was studied by Mosheiov
(1995, 1998), who proved that makespan minimization with linear deterioration is anNP-hard
problem if there are at least two machines. He also introduced several compact MILP formu-
lations and heuristic algorithms. More recently, Ji and Cheng (2008) proposed a polynomial-
time approximation scheme for the case in which the number of machines is fixed.

The problem where the deterioration function works through steps (i.e., the processing
time of a job changes only if it is processed after a given deadline) was studied by Cheng and
Ding (2001) for the single machine case, and by Leung et al. (2008) and Lalla-Ruiz and Voß
(2016) for the multiple machine case.

Surveys on scheduling with time-dependent deterioration were proposed by Alidaee and
Womer (1999) and Cheng et al. (2004). We also refer the reader to the recent survey proposed
by Gawiejnowicz (2020) for an up-to-date overview of this class of problems.

To the best of our knowledge, the first paper on scheduling with sequence-dependent
deterioration was proposed by Ruiz-Torres et al. (2013), who studied the unrelated parallel
machine case with the objective of makespan minimization. They showed that the problem
is NP-hard and proposed an MINLP model and a simulated annealing algorithm. A few
years later, Santos and Arroyo (2017) proposed an ILS and an ILS combined with a random
variable neighborhood descent algorithm, and showed that their algorithms computationally
outperformed the one proposed in Ruiz-Torres et al. (2013) on both small size instances (50
jobs and 10 machines) and large size instances (150 jobs and 20 machines). In the same
period, Araújo et al. (2017) linearized the model proposed in Ruiz-Torres et al. (2013) and
improved its performance so that it was able to solve exactly instances with up to 50 jobs
and 10 machines. More recently, Ding et al. (2019) studied a similar problem in which the
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deterioration level of a machine when processing a job depends on the deterioration factor
of the job itself in addition to those of the jobs already processed. The authors studied the
objectives of minimizing the makespan and minimizing the weighted completion time. They
proposed an ejection chain algorithm and tested it on instances with up to 50 jobs and 10
machines.

Maintenance activities were also studied by Kuo and Yang (2008), Zhao and Tang (2010),
Yang (2011), and Yang et al. (2012) in the context of scheduling with position-dependent de-
terioration. Position-dependent deterioration can be considered as a special case of sequence-
dependent deterioration in which the additional time required to process a job depends only
on the number of jobs that were processed since the last maintenance (and not on the type
of jobs, as in the sequence-dependent case). While Kuo and Yang (2008) and Zhao and Tang
(2010) focused on the single machine problem, Yang (2011) and Yang et al. (2012) dealt with
the multiple machine case. In all these problems, as in ours, a maintenance activity restores
the full productivity of a machine.

We note, in addition, that the term “maintenance activity” is widely used in the scheduling
literature, sometimes with different meanings with respect to the one we adopt in our work.
The term might refer, for example, to a mandatory operation (see, e.g., Nesello et al. (2018b))
or to a rate modifying (rm) operation that changes the processing time of subsequent jobs
(either by speeding them up or slowing them down).

A large stream of the literature is dedicated to rm activities. To the best of our knowledge,
the concept was introduced by Lee and Leon (2001) to describe a scheduling behavior in an
electronic assembly line. In their single machine scheduling problem, each job had two possible
processing times, depending on whether it was scheduled before or after the rm activity. The
problem was then to decide the job ordering and the position of the rm activity, if necessary.
This study was extended by Mosheiov and Sidney (2003), who addressed a similar problem
with the addition of precedence constraints. They also studied the problem with the addition
of a learning effect, which can be seen as the opposite of a position-dependent deterioration
(i.e., processing a job shortens the duration of every subsequent job). Some recent studies, as
Wang and Li (2017) and Lu et al. (2018), consider the case in which the rm activity has an
execution time that linearly depends on its starting time. We refer the interested reader to
the recent book by Strusevich and Rustogi (2017) for further details on rm activities.

The first work in which sequence-dependent deterioration and maintenance activities were
studied together was proposed by Ruiz-Torres et al. (2017). In their paper, the deteriora-
tion level of a machine when processing a job depends only on the types of jobs that the
machine has processed since its last maintenance. The authors studied the case of identical
machines. They introduced an MINLP model to describe the problem and proposed some
constructive heuristics to find good quality solutions. In our work, which extends the one by
Ruiz-Torres et al. (2017), we propose new mathematical models and metaheuristic algorithms
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for scheduling problems with sequence-dependent deterioration and maintenance events. All
our techniques are valid for the general case of unrelated machines. A preliminary version of
our work containing the model of Section A.4.2 and a prior ILS implementation was presented
in Mendes and Iori (2019).

A.3 Problem description

Let J = {1, 2, . . . , n} be a set of independent jobs, all available at the beginning of the
working horizon, to be processed on a set M = {1, 2, . . . ,m} of unrelated parallel machines
subject to deterioration. Let pij be the ideal processing time of job j (j ∈ J) on machine
i (i ∈ M), that is, the processing time when the machine is fully operative, so either at
the beginning of the time horizon or right after a maintenance event has occurred. Let also
dij ≥ 1 be the delay factor caused by the deterioration of machine i after processing job j.
As the delay factors are multiplicative, let δij ≥ 1 be the accumulated delay factor due to
the deterioration of machine i because of all the jobs it has processed before j since the last
maintenance. This sequence-dependent deterioration (which is also made clear by means of
Example 1 at the end of this section) can be described as follows:

• the actual processing time of job j on machine i is equal to pijδij ;

• the accumulated delay factor caused by the deterioration of machine i after processing
job j is equal to δijdij .

It can be observed that the accumulated delay factor at the start of job j (i.e., δij) is equal
to the product of the delay factors of all jobs processed before j since the last maintenance.

Let ti be the duration of a maintenance event that returns machine i to its fully operative
state (i.e., δij = 1, for all j processed right after a maintenance activity). A single machine
cannot process a job and perform a maintenance activity at the same time. In addition,
preemption is not allowed, so a machine cannot be interrupted while it is processing a job to
perform a maintenance activity. There is no theoretical limit on the number of maintenance
activities that can be performed on a single machine (even if in practice every relevant schedule
has at most n− 1 maintenance activities), nor on the number of maintenance activities that
can be performed in parallel on all machines.

Each job must be assigned to a machine in such a way that the makespan (i.e., the
maximum completion time among all jobs) is minimized. By summing the actual processing
times of the jobs and the maintenance times, we can easily compute the completion time of
each machine, and thus the makespan. The insertion of idle times on the machine schedules
cannot decrease the makespan, because there are no limitation on the number of simultaneous
maintenance activities occurring at a given time, all jobs are available at time 0, and there
are no precedence constraints. Thus, there is always an optimal solution without idle times.
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According to the three-field notation by Graham et al. (1979), this problem can be denoted
as R|Sdd,mnt|Cmax, where “R” stands for unrelated parallel machines, “Sdd” for sequence-
dependent deterioration, “mnt” for maintenance, and “Cmax” for makespan minimization.
The R|Sdd,mnt|Cmax is strongly NP−hard because it generalizes the well-known R||Cmax,
already proven to be strongly NP-hard in Pinedo (2016). In the following, we introduce an
example that will be resumed in the next sections to outline the behavior of our models.

Example 1 Let us consider the following instance with two machines and four jobs, whose
ideal processing times, delay factors, and maintenance durations are displayed in Table A.1.

Table A.1: Ideal processing times, delay factors, and maintenance times for Example 1

machine ti
ideal processing time (pij) delay factor (dij)

j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

i = 1 2 10 20 10 30 1.2 1.1 1.1 1.2
i = 2 5 20 10 10 30 1.1 1.2 1.1 1.1

As shown in Figure A.1, jobs 1 and 3 are scheduled on machine 1 separated by a main-
tenance activity (represented in white in the figure). Job 4 is scheduled first on machine 2,
followed by job 2. The actual processing time of job 2 is 11 instead of 10 because of the dete-
rioration caused by job 4 (represented by hashed lines in the figure). The optimal makespan is
41. Note that we included a maintenance on machine 1 between job 1 and job 3 for descriptive
purposes. One could also skip the maintenance and process job 3 first, followed by job 1, and
obtain a load of 21 units on machine 1. In any case, the optimal makespan would remain 41
as the workload on machine 2 is unchanged.

Figure A.1: Optimal job scheduling for Example 1 (machine 1 on top, machine 2 at the
bottom)

0 10 20 30 40

0 10 20 30 40

1 3

4 2
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A.4 Mathematical models

In this section, we present the MINLP model by Ruiz-Torres et al. (2017), introduce
its linearized version, and then propose three novel MILP models. To ease notation, if the
meaning of a variable is the same in several models, then we maintain the same name.

A.4.1 Non-linear position-based formulation

The model of Ruiz-Torres et al. (2017) decomposes each machine into slotsH = {1, 2, . . . , |H|}.
A slot defines the position of an activity (a job or a maintenance) on a machine schedule and
has no pre-determined duration. Since we do not know a priori the number of slots required
by each machine, we use a valid upper bound |H| = 2n−1 to estimate it. Indeed, in the worst
case a single machine processes all the jobs and performs a maintenance activity between each
pair of jobs. Because the number of slots per machine i is generally larger than the number of
activities assigned to i, some of the slots on i may remain free (i.e., with no assigned activity).
Such slots are herein called empty slots. Better upper bounds on H can be derived, using the
form |H| = 2(n−m′)+1, if we can prove that there is always an optimal solution in which m′

machines perform at least one job, or, in other words, in which no single machine performs
strictly more than n −m′ + 1 jobs, so resulting in at most n −m′ maintenance operations.
In particular, if the ideal processing time of each job is the same on every machine, then we
have m′ = m.

Let xijh be a binary variable taking the value 1 if job j is executed in slot h of machine i,
and 0 otherwise. Similarly, let sih be a binary variable taking the value 1 if a maintenance
is executed in slot h of machine i, and 0 otherwise, and let qih be a continuous variable
that reports the current performance ratio of machine i in slot h. The performance ratio is
simply the inverse of the accumulated delay factor δij : it satisfies 0 < qih ≤ 1 and the actual
processing time of job j on machine i in slot h is equal to pij

qih
, while the performance ratio of

machine i after processing job j in slot h is equal to qih(1− d′ij).
Parameter d′ij is called deterioration effect and satisfies 0 ≤ d′ij < 1. It is adopted by

Ruiz-Torres et al. (2017) to replace delay factor dij by imposing the relation dij = 1
1−d′ij

. For
example, a job j whose deterioration effect on machine i is d′ij = 0.01 has a delay factor on
machine i of dij = 1

0.99 ≈ 1.0101.
By using these variables and an additional continuous variable Cmax indicating the value

of the makespan, the R|Sdd,mnt|Cmax can be modeled as:

min Cmax (A.1)

s.t.
∑
j∈J

xijh + sih ≤ 1 ∀i ∈M,h ∈ H, (A.2)

∑
i∈M

∑
h∈H

xijh = 1 ∀j ∈ J, (A.3)
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∑
j∈J

∑
h∈H

pij
qih

xijh +
∑
h∈H

ti sih ≤ Cmax ∀i ∈M, (A.4)

xijh ≤
∑
j′∈J

xij′,h−1 + sih ∀i ∈M, j ∈ J, h ∈ H\{1}, (A.5)

qi,h−1

∑
j∈J

(1− d′ij) xij,h−1 + si,h−1 = qih ∀i ∈M,h ∈ H\{1}, (A.6)

qi1 = 1 ∀i ∈M, (A.7)

xijh ∈ {0, 1} ∀i ∈M, j ∈ J, h ∈ H, (A.8)

sih ∈ {0, 1} ∀i ∈M,h ∈ H, (A.9)

qih ≥ 0 ∀i ∈M,h ∈ H, (A.10)

Cmax ≥ 0. (A.11)

Objective function (A.1) imposes the minimization of the makespan. Constraints (A.2) state
that each slot can either accommodate a job, a maintenance activity, or remain empty. Con-
straints (A.3) impose each job to be processed by a machine. Constraints (A.4) make sure
that the maskespan is equal to or greater than the finishing time of each machine. Constraints
(A.5) force the empty slots to be positioned at the end of the planning horizon. Constraints
(A.6) compute the performance ratio of each machine in each slot through an inductive pro-
cess based on the previous slot of the machine. Constraints (A.7) impose the machines to be
fully operative at the beginning of the planning horizon. It can be noticed that constraints
(A.4) and (A.6) are non-linear.

A.4.2 Linearized position-based formulation

The first MILP formulation that we propose is derived from the work by Araújo et al.
(2017), who modeled R|Sdd|Cmax the version of our problem without maintenance activi-
ties. It uses an accumulated delay factor δih instead of the performance ratio qih, and the
delay factor dij instead of the deterioration effect d′ij . It also uses a continuous variable aijh
that indicates the actual processing time of job j on machine i at time slot h, and “big-M”
constraints that force aijh to take (at least) value pijδih when job j is assigned to slot h on
machine i, and 0 otherwise. The linearized position-based formulation is as follows:

min Cmax (A.12)

s.t.
∑
j∈J

xijh + sih ≤ 1 ∀i ∈M,h ∈ H, (A.13)

∑
i∈M

∑
h∈H

xijh = 1 ∀j ∈ J, (A.14)

aijh ≥ pijδih −Ka
ij(1− xijh) ∀i ∈M, j ∈ J, h ∈ H, (A.15)
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∑
j∈J

∑
h∈H

aijh +
∑
h∈H

tisih ≤ Cmax ∀i ∈M, (A.16)

∑
j∈J

xijh + sih ≤
∑
j∈J

xij,h−1 + si,h−1 ∀i ∈M,h ∈ H\{1}, (A.17)

dijδi,h−1 −Kb
ij(si,h−1 + 1− xij,h−1) ≤ δih ∀i ∈M, j ∈ J, h ∈ H\{1}, (A.18)

δi1 = 1 ∀i ∈M, (A.19)

xijh ∈ {0, 1} ∀i ∈M, j ∈ J, h ∈ H, (A.20)

sih ∈ {0, 1} ∀i ∈M,h ∈ H, (A.21)

aijh ≥ 0 ∀i ∈M, j ∈ J, h ∈ H, (A.22)

δih ≥ 1 ∀i ∈M,h ∈ H, (A.23)

Cmax ≥ 0. (A.24)

Objective function (A.12) and constraints (A.13) and (A.14) are identical to those reported
in the MINLP model of Section A.4.1. Constraints (A.15) are used to define the actual
processing time of job j in slot h of machine m. Coefficient Ka

ij is a large constant defined
for any machine i and job j in such a way that aijh is allowed to take value 0 when xijh = 0

and forced to take at least value pijδih when xijh = 1. Constraints (A.16) are the linearized
version of constraints (A.4), and are used to calculate the makespan. Constraints (A.17)
are the counterparts of constraints (A.5) and prevent a job or a maintenance activity to be
scheduled after an empty slot (slot h on machine i is empty if

∑
j∈J xijh + sih = 0). In

other words, all the empty slots of a given machine are forced to be positioned at the end
of the planning horizon. Worth is mentioning that, while constraints (A.5) have the purpose
of removing symmetrical solutions, constraints (A.17) are necessary for the correctness of
the model, because inserting an empty slot in the middle of the planning horizon would be
equivalent to performing an instantaneous maintenance activity. Constraints (A.18) are the
counterpart of constraints (A.6) and compute the accumulated delay factor of each machine
in each time slot through an inductive process. The coefficient Kb

ij is a sufficiently large
constant defined for any machine i and job j, so that δih is allowed to take the value 0 when
xij,h−1 = 0. Constraints (A.19) impose the machines to be fully operative at the beginning
of the planning horizon, but are not necessary for the correctness of the model. Note that
one could use an additional set of constraints to prohibit the scheduling of two consecutive
maintenance activities on a machine. This would potentially reduce symmetry in the search
space as a solution might have several “duplicates” with unnecessary maintenance events. For
example, we described in Figure A.1 an optimal solution with makespan 41 that schedules a
maintenance event on machine 1 between jobs 1 and 3. This solution has 9 duplicates with
the same makespan in which γ maintenance events (γ = 2, . . . , 10) are scheduled between the
two jobs.

In the following, we provide a property about the optimal scheduling structure derived
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from Lemma 1 in Ruiz-Torres et al. (2017), we explain how to compute good values for the
big-M coefficients, and we outline the weaknesses of the model.

Property 1 There is always an optimal solution in which a job j is scheduled in a position
h of a machine i in such a way that (δih − 1)pij ≤ ti holds.

Proof. Consider a solution S in which a job j is scheduled in slot h on machine i such that
(δih−1)pij > ti, and let Q be the time required by machine i to process all the activities until
it has finished job j. The alternative solution S′ in which machine i schedules a maintenance
in slot h and processes job j in slot h + 1 takes Q′ = Q − δihpij + ti + pij . It follows that
Q−Q′ = (δih− 1)pij − ti, which is strictly positive according to the initial condition. Finally,
because all delay factors dij are greater than or equal to 1, we can simply show that the
accumulated delay factor in the original solution S after processing job j in slot h, which
is δi,h+1 = δihdij , cannot be smaller than the accumulated delay factor in solution S′ after
performing a maintenance in slot h and processing job j in slot h + 1, which is δi,h+2 = dij .
As a result, because the two solutions S and S′ have the same job ordering but S′ completes
j sooner and with a lower accumulated delay factor, then S′ is at least as good as S.

An interesting implication of Property 1 is that there is always an optimal solution that
satisfies δih ≤ 1 + ti

pij
, ∀i ∈M,h ∈ H : sih = 0. This allows us to define the big-M values as:

Ka
ij = pij ×min

{ ∏
j′∈J

dij′ , (1 +
ti

minj′{pij′}
)×max

j′
{dij′}

}
i ∈M, j ∈ J, (A.25)

Kb
ij = dij ×min

{ ∏
j′∈J

dij′ , (1 +
ti

minj′{pij′}
)×max

j′
{dij′}

}
i ∈M, j ∈ J. (A.26)

Indeed, we know that, in order to deactivate constraints (A.15) when variables xijh take
value 0, we need coefficients Ka

ij to be greater than or equal to pijδih. An obvious upper
bound on δih is the product of the delay factors of all jobs. Thanks to Property 1, a refined
upper bound of δih when a job is scheduled in position h (i.e., when sih = 0) is (1+ ti

minj′{pij′}
).

By multiplying this value by maxj′{dij′}, we obtain an upper bound which is also valid when
sih = 1. A similar reasoning can be applied to determine coefficients Kb

ij .
The linearized position-based model involves a polynomial number O(|M ||J |2) of variables

and a polynomial number O(|M ||J |2) of constraints. However, it also has a large amount of
symmetry: indeed, a subset of jobs processed between two maintenance activities can be
exchanged with another subset of jobs processed between two other maintenance activities
on the same machine without affecting the makespan. In the following, we introduce an
event-based formulation aimed at palliating this issue.
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A.4.3 Event-based formulation

The event-based formulation uses the notion of a block. A block is a sequence of jobs that
occurs either before the first maintenance activity, or between two consecutive maintenance
activities, or after the last maintenance activity. The model decides on which machine a job is
scheduled, and whether a job initiates a block or is positioned after another job. The decisions
regarding the ordering of the blocks within the same machine do not have any impact on the
makespan and are thus removed from the model.

We define j0 as a dummy job of processing time 0 and delay factor 1 that initiates each
block. We use a binary variable xijj′ that takes the value 1 if job j′ is scheduled right after
job j on machine i, and 0 otherwise. For each machine, we identify sequences of jobs that
can be disregarded by the model (as they are not necessary to reach an optimal solution) and
store them in set S. Continuous variables δj and aij now define the accumulated delay factor
before starting job j and the actual processing time of job j on machine i, respectively. The
event-based formulation is as follows:

min Cmax (A.27)∑
i∈M

∑
j∈J∪j0

xijj′ = 1 ∀j′ ∈ J, (A.28)

∑
j∈J∪j0

xijj′ ≥
∑
j′′∈J

xij′j′′ ∀j′ ∈ J, i ∈M, (A.29)

aij′ ≥ pij′δj′ −Ka
ij′(1− xijj′) ∀i ∈M, j ∈ J, j′ ∈ J, (A.30)

aij′ ≥ pij′xij0j′ ∀i ∈M, j′ ∈ J, (A.31)∑
j∈J

aij − ti +
∑
j′∈J

tixij0j′ ≤ Cmax ∀i ∈M, (A.32)

δj′ ≥ δjdij −Kb
ij(1− xijj′) ∀i ∈M, j ∈ J, j′ ∈ J, (A.33)

xijj′ = 0 ∀(i, j, j′) ∈ S (A.34)

δj′ ≥ 1 ∀j′ ∈ J, (A.35)

xijj′ ∈ {0, 1} ∀i ∈M, j ∈ J ∪ j0, j′ ∈ J, (A.36)

aij′ ≥ 0 ∀i ∈M, j′ ∈ J, (A.37)

Cmax ≥ 0. (A.38)

Constraints (A.28) force each job to be scheduled on a machine, either after another job or
after a dummy job j0. Constraints (A.29) allow a job j′′ to be scheduled after job j′ on
machine i only if job j′ was itself scheduled after another job j or after the dummy job j0 on
machine i. Constraints (A.30) and (A.31) are used to define the actual processing time of job
j′ on machine i. While the former constraints are activated if j′ is scheduled after another job,
the latter ones are activated if j′ is scheduled after the dummy job j0. Constraints (A.32) are
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used to calculate the makespan. Note that the number of maintenance activities scheduled on
a given machine is equal to the number of blocks scheduled on that machine (i.e., the number
of times a job is scheduled after the dummy job j0) minus one. Constraints (A.33) compute
the accumulated delay factor before starting job j′ and constraints (A.34) forbid certain jobs
to be scheduled after some others on specific machines. Initially, we forbid each job to be
scheduled right after itself on any machine (i.e., ∀i ∈M, j ∈ J, (i, j, j) ∈ S).

Example 1 (resumed) The values of the variables of the event-based formulation for Exam-
ple 1 in the solution depicted in Figure 1 are as follows:

• x101 = 1, δ1 = 1, a11 = 10

• x103 = 1, δ3 = 1, a13 = 10

• x204 = 1, δ4 = 1, a24 = 30

• x242 = 1, δ2 = 1.1, a22 = 11

And constraints (A.32) are as follows:

• Cmax ≥ 10 + 10 + 2(2− 1) = 22 (load on machine 1)

• Cmax ≥ 30 + 11 + 5(1− 1) = 41 (load on machine 2)

In the following, we provide a property on the optimal scheduling structure that allows
further triplets (i, j, j′) to be added to set S, so reducing by nearly a half the number of
binary variables in the model. This property is derived from Lemma 1 in Ding et al. (2019)
and Lemma 1 from Ruiz-Torres et al. (2013), both devoted to the case without maintenance,
and was used (but not proved) by Ruiz-Torres et al. (2017) to derive heuristics for the case
with maintenance.

Property 2 There is always an optimal solution in which two successive jobs j and j′

scheduled in the same block on a machine i satisfy the condition

pij
dij − 1

≥
pij′

dij′ − 1
∀i ∈M, j, j′ ∈ J : xijj′ = 1. (A.39)

Proof. Consider a solution S in which job j is scheduled right after job j′ on machine i, in the
same block, in such a way that pij

dij−1 >
pij′
dij′−1 holds. Let Q be the time required by machine

i to process all activities until job j is finished. Let us also consider an alternative solution
S′ in which job j is scheduled on machine i just before job j′, and let Q′ be the time required
to process all activities until job j′ is finished. By denoting k the time required to process
all jobs before the beginning of job j′ (resp., job j) in solution S (resp., solution S′), we can
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define Q (resp., Q′) as follows:

Q =k+pij′+(δj′ − 1)pij′+pij +(δj′dij′ − 1)pij ,

Q′=k+pij +(δj − 1)pij +pij′+(δjdij − 1)pij′ .

As δj′ only depends on the set of jobs performed before job j′ by machine i since the last
maintenance, we know that δj′ in Q is equal to δj in Q′. To ease the notation, we set
δj = δj′ = δ in the rest of the proof. By computing the difference between the completion
times of the two partial schedules, we obtain:

Q−Q′=(δ − 1)pij′ + (δdij′ − 1)pij − (δ − 1)pij − (δdij − 1)pij′ ,

=(δ − δdij)pij′ + (δdij′ − δ)pij ,

=(1− dij)δpij′ + (dij′ − 1)δpij ,

=− (dij − 1)δpij′ + (dij′ − 1)δpij .

Because of (A.39), we know that pij
dij−1 >

pij′
dij′−1 , or, in other words, as dij − 1 and dij′ − 1

are strictly positive, that pij(dij′ − 1) > pij′(dij − 1). Thus, as also δ is strictly positive, then
Q−Q′ is strictly positive as well. One can then notice that the accumulated delay factor after
processing job j in solution Q is the same as the accumulated delay factor after processing
job j′ in solution Q′, which is δdijdij′ . As a result, since the two solutions have processed the
same set of jobs, but solution S′ completed it sooner and with the same accumulated delay
factor, solution S′ is at least as good as solution S.

Note that, for a given machine, Property 2 is a necessary but not sufficient condition for the
optimality of a schedule. That is, there could be some job schedules satisfying condition (A.39)
that do not minimize the makespan of the machine (an intuitive example is to schedule all the
jobs in the same block). This differs from the version of the problem without maintenance in
which, for a given machine, the job schedules minimizing the makespan of the machine always
satisfy condition (A.39). We also outline that there may exist several optimal solutions that
do not satisfy condition (A.39): indeed, as the makespan only depends on the schedule of
the machine(s) with largest workload, it is possible that one or more blocks in machines with
smaller workload do not fulfill (A.39). However, Property 2 states that there is always at least
one solution in which the job ordering of each block satisfies this condition. As a corollary of
Property 2, we obtain:

xijj′ = 0 ∀i ∈M, ∀j, j′ ∈ J :
pij

dij − 1
<

pij′

dij′ − 1
, (A.40)

which allows us to set nearly half of the variables to 0 through constraints (A.34).
The event-based model also involves a polynomial number O(|M ||J |2) of variables and a
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polynomial number O(|M ||J |2) of constraints. It has less symmetry since the block ordering
decision is removed from the model. However, its linear relaxation is weak due to the big-M
constraints. In the following, we introduce a block-based formulation free of big-M constraints.

A.4.4 Block-based formulation

While the event-based formulation decides on which machine a job is scheduled, and
whether a job initiates a block or is positioned after another job, the block-based formulation
selects from a large set of feasible blocks the ones that minimize the makespan. The decisions
regarding the job ordering within each block are determined before running the model in
accordance with Property 2. This formulation is a natural extension of the set covering
formulation of Gilmore and Gomory (1961, 1963) originally proposed for the cutting stock
problem. Some formulations using the notion of blocks were already proposed for other
scheduling problems (see, e.g., Pacheco et al. (2013) for a single-machine scheduling problem
with set-up times), but not all of these formulations associate a variable to each of the feasible
blocks as the model presented in this section does.

We borrow the set covering notation and use Bi to define both the set of blocks and the
set of block indices that can be scheduled on machine i. We also use b to define both a block
and its index. Note that sets Bi and B′i(i, i′ ∈M, i ̸= i′) are not necessarily identical as shown
in the example at the end of this section. The bth block on machine i is described by its
duration aib and by an integer array (αi1b, α

i
2b, . . . , α

i
|J |b), where αijb takes the value 1 if job j is

included in the bth feasible block of machine i, and 0 otherwise. We now use binary variables
xib that take the value 1 if the bth feasible block of machine i is selected, and 0 otherwise. The
block-based formulation is as follows:

min Cmax (A.41)∑
i∈M

∑
b∈Bi

αijbx
i
b = 1 ∀j ∈ J, (A.42)

− ti +
∑
b∈Bi

(aib + ti)x
i
b ≤ Cmax ∀i ∈M, (A.43)

xib ∈ {0, 1} ∀i ∈M, b ∈ Bi, (A.44)

Cmax ≥ 0. (A.45)

Constraints (A.42) impose that each job is contained in exactly one of the selected blocks,
and constraints (A.43) calculate the makespan, which is minimized in (A.41).

In Algorithm 4, we provide a pseudo-code to exhaustively enumerate every feasible non-
dominated block. A block b is dominated if there exists a set of blocks S containing the same
jobs as b that can be processed in a shorter time (taking into account the duration of the |S|
blocks and the |S| − 1 maintenance activities in-between blocks). Dominated blocks are not
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Algorithm 4 Create blocks
1: for each i ∈M do ◃ For each machine i
2: Bi ← ∅, b = 0 ◃ There are no blocks in Bi
3: for each j ∈ J do
4: αi

jb ← 0 ◃ Create the empty block
5: end for
6: aib ← 0, δib ← 1, Bi ← Bi ∪ {b}, b← b+ 1 ◃ Add the empty block to Bi
7: for each j ∈ J ordered by non-increasing pij

dij−1 do ◃ For each job
8: B̄i ← ∅ ◃ There are no new blocks
9: for each b′ ∈ Bi do ◃ For each existing block in Bi

10: for each j′ ∈ J do
11: αi

j′b ← αi
j′b′ ◃ Block b is a copy of the existing block b′

12: end for
13: αi

jb ← 1, aib ← aib′ + δib′ pij , δ
i
b ← δib′ dij ◃ add job j to block b and perform aib and δib

14: if isNotDominated(b) then ◃ if the block is not removed by our reduction criterion
15: B̄i ← B̄i ∪ {b}, b← b+ 1 ◃ add block b to the new blocks, and increment b
16: end if
17: end for
18: for each b̄ ∈ B̄i do
19: Bi ← ∪{b̄}, ◃ add the new blocks to Bi
20: end for
21: end for
22: end for

useful to the model because there is always an optimal solution that does not contain any
dominated block. Before describing the algorithm steps, we give its general idea: starting
from Bi containing only the empty block, the algorithm temporarily duplicates every block
in Bi and adds the job currently processed in each duplicate. It then discards the newly
generated blocks that are dominated, inserts the remaining ones into Bi and moves on to the
next job. As a result, Bi contains at most 2j blocks at step j.

For each machine i, the algorithm sets the block counter to 0 (step 2), creates the dummy
empty block of duration 0 and accumulated delay factor 1, and adds it to the set of blocks of
machine i (steps 3-6). Then, for each job j (preliminary re-ordered by non-increasing pij

dij−1

values), it creates a temporary new set B̄i in which it stores the new blocks generated when
adding job j (step 8). After this, each original block in Bi is copied, one at a time, into
block b (steps 9-12). The algorithm adds job j to block b and computes its duration and its
accumulated delay factor (step 13). Then, the algorithm determines if block b is dominated
or not in the way described below. If block b is not dominated, then it is added to the new
blocks (step 15) and the block counter is incremented. If, instead, block b is dominated, then
it will simply be overwritten during the next loop. Finally, the algorithm adds every newly
generated non-dominated block from B̄i into Bi (steps 18-20) and moves on to the next item
j.

Assessing whether a block is dominated or not is not trivial. An easy criterion can be
derived through Property 1, by checking that the duration of the new block aib is strictly
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shorter than the duration of the old block aib′ plus the ideal processing time of job j plus the
duration of a maintenance activity ti. If it is not the case, then it is shorter to perform a
maintenance activity before processing j and block b is dominated (and so, it does not need
to be generated). The more powerful test that we implemented consists in trying, in turns, to
insert a maintenance activity between each pair of consecutive jobs and comparing the sum of
the duration of these two blocks plus the duration of a maintenance activity with the duration
of the new block aib. If aib is longer, then it is more advantageous to use two blocks separated
by a maintenance activity instead of block b, and thus it is not necessary to generate b as it
is dominated. Note that this test was also used in the heuristic of Ruiz-Torres et al. (2017)
in order to improve an incumbent solution.

Example 1 (resumed) The blocks generated by Algorithm 4 for Example 1 are presented in
Table A.2. An optimal solution provided by an ILP solver selects block 6 in machine 1 and
block 9 in machine 2 for a total makespan equal to 41. Note that there exists other optimal
solutions with a makespan equal to 41, such as the one obtained by selecting blocks 1 and 2
in machine 1 and block 10 in machine 2.

Table A.2: Blocks generated by Algorithm 4 for Example 1

Jobs Id Machine 1 Machine 2

order aib δib isNotDominated order aib δib isNotDominated

{1} 1 1 10 1.2 true 1 20 1.1 true
{2} 2 2 20 1.1 true 2 10 1.2 true
{3} 3 3 10 1.1 true 3 10 1.1 true
{4} 4 4 30 1.2 true 4 30 1.1 true

{1,2} 5 2,1 31 1.32 true 1,2 31 1.32 true
{1,3} 6 3,1 21 1.32 true 1,3 31 1.21 true
{1,4} 7 4,1 42 1.44 false 4,1 52 1.21 true
{2,3} 8 2,3 31 1.21 true 3,2 21 1.32 true
{2,4} 9 2,4 53 1.32 false 4,2 41 1.32 true
{3,4} 10 4,3 42 1.32 false 4,3 41 1.21 true

{1,2,3} 11 2,3,1 43.1 1.452 false 1,3,2 43.1 1.452 true
{1,2,4} 12 2,4,1 66.2 1.584 false 4,1,2 64.1 1.452 true
{1,3,4} 13 4,3,1 55.2 1.584 false 4,1,3 64.1 1.331 true
{2,3,4} 14 2,4,3 66.2 1.452 false 4,3,2 53.1 1.452 true

{1,2,3,4} 15 2,4,3,1 80.72 1.7424 false 4,1,3,2 77.41 1.5972 true

The block-based model involves a polynomial number of constraints O(|M | + |J |) and
an exponential number of variables, which empirically grows very fast as the number of jobs
increases (some instances with 100 jobs led to models with more than 100 000 000 variables in
our tests). A possible option could be to only generate a subset of variables through column
generation and embed the procedure in a branch-and-price algorithm. In the following, we
introduce an arc flow formulation whose number of variables still grows exponentially with
the number of jobs, but at a lesser extent as shown in the computational experiments section.
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A.4.5 Arc flow-based formulation

The arc flow formulation was popularized by Valério de Carvalho (1999) for the CSP, and
extensively studied afterwards in several application fields. Recently, it has been applied to
cutting and packing (see, e.g., Clautiaux et al. (2018), Dell’Amico et al. (2019), and Delorme
and Iori (2020)), production (see, e.g., Nesello et al. (2018a) and Ramos et al. (ming)), and
vehicle routing (see, e.g., Clautiaux et al. (2017)). In the scheduling field, arc flow models
were developed to solve problems on parallel machines, either to minimize weighted tardiness
(Pessoa et al. (2010)) or weighted completion times (Kramer et al., 2019).

In the arc flow-based formulation we propose for the R|Sdd,mnt|Cmax, the composition
of a block is defined as a path in a graph where nodes are intermediary accumulated delay
factors and arcs are jobs. Formally, for each machine i, let Gi = (Vi,Ai) be a multigraph
where the node set Ni includes every relevant intermediary accumulated delay factors. A
trivial way to define Ni is to include every z satisfying:

z =
∏
j∈J

((dij − 1)yj + 1),

yj ∈ {0, 1} ∀j ∈ J.

Example 1 (resumed) All the possible intermediary accumulated delay factors for Example 1
areN1 = {1, 1.1, 1.2, 1.21, 1.32, 1.44, 1.452, 1.584, 1.7424} andN2 = {1, 1.1, 1.2, 1.21, 1.32, 1.331,
1.452, 1.5972}.

To correctly represent a block, each path must start at the source node s = 1. There
is no restriction on the node in which a path must terminate. Arcs in Ai are in the form
(e, f, j) and have a given duration τ necessary to calculate the makespan, where j (j ∈ J) is
the job index, e (e ∈ Ni) is the intermediary accumulated delay factor at the beginning of job
j, f (f ∈ Ni, f = e dij) is the intermediary accumulated delay factor at the end of job j, and
τ is obtained by multiplying pij (the ideal processing time of job j on machine i) by e (the
accumulated delay factor at the beginning of the arc). By using a binary variable xiefj that
takes the value 1 if arc (e, f, j) is selected on machine i, and 0 otherwise, the arc flow-based
formulation is as follows:

min Cmax (A.46)∑
i∈M

∑
(e,f,j)∈Ai

j=j′

xiefj = 1 ∀j′ ∈ J, (A.47)

∑
(e,f,j)∈Ai

e=k

xiefj ≤
∑

(e,f,j)∈Ai
f=k

xiefj ∀i ∈M, ∀k ∈ Ni \ {s},

(A.48)
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− ti + ti
∑

(e,f,j)∈Ai
e=s

xiefj +
∑

(e,f,j)∈Ai

e xiefj pij ≤ Cmax ∀i ∈M, (A.49)

xiefj ∈ {0, 1} ∀i ∈M, (e, f, j) ∈ Ai, (A.50)

Cmax ≥ 0. (A.51)

Constraints (A.47) force exactly one arc associated with each job to be selected. Con-
straints (A.48) ensure flow conservation, or, in other words, that the number of jobs starting
with accumulated delay factor k (k ∈ Ni \ {s}) is smaller than or equal to the number of
jobs ending with accumulated delay factor k. Constraints (A.49) calculate the makespan by
summing, for each machine, the duration of the selected arcs with the time required for the
maintenance activities (if we count one maintenance for each selected arc originating from
the source node, we should remove one extra maintenance). In Algorithm 5, we provide a
procedure to generate all the feasible arcs.

Algorithm 5 Create arcs
1: for each i ∈M do ◃ For each machine i
2: Ai ← ∅, Ni ← s ◃ There are no arcs in Ai and only the source node in Ni

3: for each j ∈ J ordered by non-increasing pij

dij−1 do ◃ For each job
4: N̄i ← ∅ ◃ There are no new nodes
5: for each k ∈ Ni do ◃ For each existing node in Ni

6: if isNotDominated(k, dijk, j) then ◃ if the arc is not removed by our reduction
criterion

7: Ai ← (k, dijk, j) ◃ Add the new arc to Ai

8: N̄i ← dijk ◃ Add the new node to N̄i

9: end if
10: end for
11: for each k̄ ∈ N̄i do
12: Ni ← ∪{k̄}, ◃ add the new nodes to Ni

13: end for
14: end for
15: end for

The arc generation algorithm is similar to the block generation algorithm. However,
assessing whether an arc is dominated or not is more challenging. There is still an easy
criterion which can be derived from Property 1, by checking that the duration of each new
arc (k, dijk, j) is strictly smaller than the ideal processing time of job j plus the duration of a
maintenance activity (i.e., pijk < pij + ti). If it is not the case, then it is shorter to perform a
maintenance activity before processing j at intermediary accumulated delay factor k and arc
(k, dijk, j) does not need to be generated as it is dominated.

Example 1 (resumed) The arcs generated by Algorithm 5 for Example 1 are displayed in
Figures A.2 and A.3. The first set of nodes, s,B, . . . , G, corresponds to each intermediary
accumulated factor in N1 for machine 1, which are 1, 1.1, . . . , 1.7424. The second set of nodes,
s′, B, . . . ,H ′, corresponds to each intermediary accumulated factor in N2 for machine 2, which
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are 1, 1.1, . . . , 1.5972.
We now briefly explain how the graph in Figure 2 was obtained. Before processing the first

item, the set of nodes N1 only contains s, which corresponds to intermediary accumulated
factor 1. After processing job 2, Algorithm 2 creates arc (s,B, 2), where B corresponds to
intermediary accumulated factor 1.1, and adds B to N1. After processing job 4, Algorithm 2
creates arcs (s, C, 4) and (B,E, 4), where C corresponds to intermediary accumulated factor
1.2 and E to 1.32 (1.1 × 1.2), and adds C and E to N1. After processing job 3, Algorithm 2
creates arcs (s,B, 3), (B,D, 3), (C,E, 3), and (E,G, 3), where D corresponds to intermediary
accumulated factor 1.21 (1.1 × 1.1) and G to 1.452 (1.32 × 1.1), and adds D and G to N1.
Note that nodes E and B were already contained in N1 and do not need to be added again.
This gives an intuition of the reason why the number of variables grows at a lesser extent
in the arc flow-based formulation than it does in the block-based formulation. Finally, after
processing job 1, Algorithm 2 creates arcs (s, C, 1), (B,E, 1), (C,F, 1), (D,G, 1), (E,H, 1),
and (G, I, 1), where F corresponds to intermediary accumulated factor 1.44 (1.2 × 1.2), H
to 1.584 (1.32 × 1.2), and I to 1.7424 (1.452 × 1.2), and adds F , H, and I to N1.

Figure A.2: Arcs generated for Machine 1 in Example 1 without reduction procedure
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The block containing jobs 1 and 2 can be obtained on machine 1 by selecting the path
containing arcs (s,B, 2) and (B,E, 1), for a duration of 20 × 1 + 10 × 1.1 = 31. The block
containing jobs 2, 3, and 4 can be obtained on machine 1 by selecting the path containing arcs
(s,B, 2), (B,E, 4), and (E,G, 3), for a duration of 20× 1+ 30× 1.1+ 10× 1.32 = 66.2. Note
that the application of the easy reduction procedure would prevent arcs initiating at node C
or at subsequent nodes to be generated.

Figure A.3: Arcs generated for Machine 2 in Example 1 without reduction procedure

s′ B′ C′ D′ E′ F ′ G′ H′
1

3

2

4

1

3

2 2

3

2

The block containing jobs 1 and 2 can be obtained on machine 2 by selecting the path
containing arcs (s′, B′, 1) and (B′, E′, 2), for a duration of 20× 1 + 10× 1.1 = 31. The block
containing jobs 2, 3, and 4 can be obtained on machine 2 by selecting the path containing arcs
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(s′, B′, 4), (B′, D′, 3), and (D′, G′, 2), for a duration of 30× 1 + 10× 1.1 + 10× 1.21 = 53.1.
Note that applying the easy reduction procedure would not prevent any arc to be generated.

An optimal solution provided by an ILP solver selects arcs (s,B, 3) and (B,E, 1) in
machine 1 and arcs (s′, B′, 4) and (B′, E′, 2) in machine 2 for a total makespan of 41. There
exists other optimal solutions with a makespan equal to 41, such as the one obtained by selecting
arcs (s,B, 3) and (s, C, 1) in machine 1 and arcs (s′, B′, 4) and (B′, E′, 2) in machine 2.

In the following, we propose a significantly more powerful reduction criterion by assigning
an “expiration date” to each node. Before explaining in details the concept of expiration date,
we first need to observe that, as k ≥ 1,

(dij − 1) + k ≤ (dij − 1)k + k = dijk,

or, in other words, that by approximating dijk with (dij − 1) + k, we obtain a lower bound
on the accumulated delay factor. This approximation has a nicer mathematical structure,
because it removes the multiplicative aspect of the delay factors. We can now predict that,
by processing a set S of jobs whose sum of ideal processing times is l (i.e.,

∑
j∈S pij = l) after

a set of jobs S′ whose accumulated delay factor is k (i.e.,
∏
j∈S′ dij = k), then at least l(k−1)

additional time can be solely imputed to the machine deterioration caused by the jobs in S′.
As a result, if l(k−1) is greater than or equal to the time necessary to perform a maintenance
activity ti (i.e., if l ≥ ti

(k−1)), then it is better to schedule a maintenance activity between S’
and S than to schedule the two sets of jobs successively one after the other.

The “natural” expiration date of a node on machine i is equal to ti
(k−1) . When we create

a new node dijk through arc (k, dijk, j), we compare its natural expiration date ti
(dijk−1) with

the “real” expiration date of its predecessor (i.e., node k) minus the ideal processing time of
job j and we keep the minimum among the two values. If node dijk was already defined,
then its expiration date becomes the maximum between its current expiration date and the
expiration date it would have had if the node was just created.

Example 2 Let us consider an instance with a single machine having maintenance time
t1 = 6, and seven identical jobs having ideal processing time p1j = 100 and delay factor
d1j = 1.01, for (j = 1, . . . , 7). After creating the initial node s, we process each job in turn
and obtain:

• node n1 = 1.01, expiration date = 6
1.01−1 = 600

• node n2 = 1.012, expiration date = min{600− 100, 6
1.012−1

} ≈ 298.507463

• node n3 = 1.013, expiration date = min{298.507463− 100, 6
1.013−1

} ≈ 198, 0132669

• node n4 = 1.014, expiration date = min{198.0132669− 100, 6
1.014−1

} ≈ 98.0132669



A.5. Metaheuristic algorithm 110

No further nodes need to be created because the remaining jobs are longer than the expiration
date. Note that if we only applied the reduction criterion from Property 1 we would have also
created node 1.015. An optimal solution schedules the first four jobs on the machine followed by
a maintenance activity and then the last three jobs, for a total duration time of 715.0501. The
selected arcs are (s, n1, 1), (n1, n2, 2), (n2, n3, 3), (n3, n4, 4), (s, n1, 5), (n1, n2, 6), (n2, n3, 7).

The arc flow-based model involves an exponential number of constraints O(
∑

i∈M |Ni|)
and an exponential number of variables O(

∑
i∈M |Ai|). Empirically, these numbers grow at a

reasonable pace as the number of jobs increases, because (i) the reduction criterion removes
a significant number of arcs and nodes, and (ii) only a few supplementary nodes need to be
created when generating the arcs for job j if the arcs of another job j′ with similar delay
factor (i.e., dij = dij′) were generated previously. Despite its scalability, the model becomes
too large for instances with 10 machines and 200 jobs. In the next section, we introduce a
metaheuristic able to find good quality solutions for large size instances.

A.5 Metaheuristic algorithm

In this section, we describe the ILS algorithm that we developed to look for high-quality
solutions in quick time as the ILP formulations can be long to provide a feasible solution,
especially for large size instances. The ILS uses a greedy algorithm to build an initial solution,
and five local search procedures to improve it.

In the following, we call S a set of jobs, and (S, i) the block obtained on machine i if it had
to process the jobs in S in the order determined by Property 2. The greedy procedure uses the
notion of “temporary blocks”, which are blocks that may be changed later in the algorithm,
and the notion of “final blocks”, which are blocks that are parts of the initial solution. The
greedy procedure works as follows. First, we assign an empty set Si of jobs to each machine
i ∈M . Then, for each job j, we determine the machine i whose temporary block is the best
fitted to perform j, (i.e., the one for which (Si ∪ {j}, i) has minimum duration), and add j

to Si. After that, we try to form a temporary block (Si, i). If the block satisfies Property 1,
we simply continue the job assignment. If, instead, the block does not satisfy the property,
then (Si, i) is split into two smaller blocks, (S′

i, i) and (S′′
i , i), separated by a maintenance

activity. We consider the first block (S′
i, i) as a final block and update job set Si so that it

now contains only the jobs in S′′
i . Once all the jobs have been processed, we transform all

the remaining temporary blocks Si into final blocks.
The initial solution is improved by means of the following five local search procedures:

1. Swap blocks: Swap two blocks (S1, i) and (S2, i′) to obtain (S1, i′) and (S2, i). Ma-
chine i is the machine with the largest workload, and block (S1, i) is the block of machine
i with the largest duration. Block (S2, i′) is chosen randomly from another machine.
The procedure performs the first swap that improves the makespan, if any, so working
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with a first improvement policy. It tries to swap block (S1, i) with at most Γ̄1 other
blocks (S2, i′).

2. Move job intra: Select two blocks (S1, i) and (S2, i) on the same machine, and move
one job j from the first block to the second one, so as to obtain blocks (S1 \ {j}, i) and
(S2 ∪ {j}, i). The procedure works with first improvement policy and tries to move at
most Γ̄2 jobs j. At each iteration, machine i, job j, and the two blocks S1 and S2 are
chosen randomly.

3. Swap jobs intra: Select two blocks (S1, i) and (S2, i) on the same machine, and swap
two jobs j ∈ S1 and j′ ∈ S2, so as to obtain blocks (S1∪{j′}\{j}, i) and (S2∪{j}\{j′}, i).
The procedure works with first improvement policy and tries to swap at most Γ̄3 jobs
j and j′. At each iteration, machine i, jobs j and j′, and the two blocks S1 and S2 are
chosen randomly.

4. Move block: Select the block with the largest duration from the machine with the
largest workload (S1, i), and move it to another machine i′ so as to create block (S1, i′).
The procedure works in first improvement, and tries to move block S1 to at most Γ̄4

machines. At each iteration, the machine i′ with smallest workload (and that was not
chosen in a previous iteration) is selected.

5. Move job inter: Select two blocks (S1, i) and (S2, i′) on two distinct machines, and
move one job j from the first set to the second one, so as to obtain blocks (S1 \ {j}, i)
and (S2 ∪ {j}, i′). The procedure finishes after a given number of iterations Λ̄5. The
procedure stops as soon as the makespan is improved and tries to move at most Γ̄5 jobs
j. At each iteration, machines i and i′, job j, and the two blocks S1 and S2 are chosen
randomly.

The local search procedures are called one after the other. Each procedure i (i = 1, . . . , 5)
is called Λ̄i times. Once the local search phase is terminated, we call the following perturbation
procedure in order to diversify the solution:

• Perturb: Randomly remove 20% of the blocks and assign, one at a time, each of the
removed jobs to the block with smallest accumulated delay factor in the machine with
smallest workload.

In each of the aforementioned procedures, it is possible that a block has to be split into
two smaller blocks if, after the job reordering from Property 2, the algorithm determines that
a maintenance activity should be performed within the block because of Property 1. The
metaheuristic stops once 20 local search/perturbation cycles were performed without any
improvement in the incumbent solution. Preliminary experiments were used to determine the
following parameters values: Γ̄1 = 5, Γ̄2 = 10, Γ̄3 = 5, Γ̄4 = |M |

2 , Γ̄5 = 10, Λ̄1 = 10, Λ̄2 = 30,
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Λ̄3 = 30, Λ̄4 = 10, and Λ̄5 = 30. This approach is different from the heuristics proposed by
Ruiz-Torres et al. (2017), as (1) we use a perturbation component that prevents the objective
function to get stuck in a local optimum, (2) our procedure includes a random component to
avoid repeating a specific local search move in case the same solution is reached twice during
the search procedure, and (3) our moves are suitable for the general case of non-identical
machines, while the constructive heuristics of Ruiz-Torres et al. (2017) use the fact that the
machines are identical.

A.6 Computational experiments

To test the performance of the methods we proposed for the R|Sdd,mnt|Cmax, we gener-
ated a set of instances by adopting the parameters already used by Ruiz-Torres et al. (2017),
namely: number of machines m taking value 2, 5, 10, or 20; ratio of jobs per machine n/m tak-
ing value 10, 15, or 20; delay factor dij uniformly distributed in the range {1.01, 1.02, . . . , 1.06}
or in the range {1.05, 1.06, . . . , 1.10}; integer duration ti of a maintenance activity i uniformly
distributed in either [1, 3] or in [1, 9]. For each of the 4 × 3 × 2 × 2 = 48 configurations, we
generated 10 instances resulting in 480 instances in total. In each of the 480 instances, the
(integer) ideal processing time of a job pij was uniformly distributed in range [1, 100]. In
our experiments, the ideal processing time of a job was the same on every machine (i.e.,
pij = pi′j , ∀i, i′ ∈M, j ∈ J), but, unlike Ruiz-Torres et al. (2017), the durations of the main-
tenance activities and of the delay factors were machine-dependent. This decision was taken
in order to make the machines unrelated, while preventing trivial decision making (e.g., if
p11 = 1 and p21 = 100, then it is unlikely that job 1 gets assigned to machine 2). All our
instances can be downloaded at https://github.com/mdelorme2/Scheduling_Sequence_
Dependent_Deterioration_Maintenance_Events_Data. All our algorithms were coded in
C++. The experiments were run on an Intel Xeon E5-2680W v3, 2.50GHz with 192GB of
memory, running under Scientific Linux 7.5, and Gurobi 7.5.2 was used to solve the MILP
models. Each instance was run using a single core with a time limit of 3600 seconds. We do
not compare our models and metaheuristic with other approaches from the literature, because
previous works did not consider maintenance (as in Santos and Arroyo Santos and Arroyo
(2017) or Ding et al. (2019)) or were designed for identical machines (as in Ruiz-Torres et al.
(2017)). We mention, however, that an adaptation of the approach in Ruiz-Torres et al. (2017)
developed to handle non-identical machines was investigated in a preliminary version of this
work (see Mendes and Iori (2019)), but turned out to be computationally outperformed by a
preliminary version of our metaheuristic.

https://github.com/mdelorme2/Scheduling_Sequence_Dependent_Deterioration_Maintenance_Events_Data
https://github.com/mdelorme2/Scheduling_Sequence_Dependent_Deterioration_Maintenance_Events_Data
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A.6.1 Computational results on small size instances

We first tested each of the four MILP models and the metaheuristic on the 120 randomly
generated instances with 2 machines, and we provide detailed results in Tables A.3–A.6. In
each table, column “Method” identifies the approach used, column “# opt.” gives the number
of proven optimal solutions found by the model, column “TT” gives the average execution
time (in seconds) required to solve an instance (including those terminated by the time limit),
column “TP” indicates the average time (in seconds) required to build the model, columns
“LB” and “UB” indicate, respectively, the average lower and upper bounds produced, columns
“nb. var.”, “nb. cons.”, and “nb. nzs” give, respectively, the average number of variables,
constraints, and non-zero elements in the MILP models, column “LP” gives the average
LP-relaxation of the model, and column “gap” gives the average relative gap computed as
100× UB−LB

UB , where LB is the lower bound provided by the model and UB is the best solution
found by the model.

Table A.3: Evaluation of the proposed approaches on instances with 2 machines. Arc flow I
is without expiration data. Arc flow II is with expiration data

method # opt. TT TP LB UB nb. var. nb. cons. nb. nzs LP gap

Slot 0 3597.9 0 756.37 795.84 7602 7685 44 448 0 4.4
Event 32 2791 0 786.57 791.49 2084 4079 17 582 0 0.6
Block 90 1084.6 1.3 791.05 791.09 1 393 975 32 12 154 388 790.9196 0.0
Arc flow I 119 109.3 0 791.08 791.09 24 889 11 094 99 493 790.9193 0.0
Arc flow II 120 60.3 0 791.09 791.09 6044 2865 24 113 790.9193 0.0
ILS - 0.5 - - 797.75 - - - - -

We observe that the MILP models that use big-M constraints displayed poor performance.
We opted to keep the two models in our computational experiments because (1) they are
natural extensions of other models proposed in the literature for the R|Sdd,mnt|Cmax without
maintenance, and (2) they outline how computationally difficult the problem is in practice.
The position-based model could not solve a single instance to optimality within an hour
(relative gap at 4.4% on average), and the event-based model only solved 32 instances in
total (relative gap at 0.6% on average). This can be explained by the very poor quality
of their continuous relaxation (having value 0), which is due to the disjunctive constraints.
The block-based formulation obtained relatively good results, as it could solve 90 instances
(relative gap at 0.005% on average), but the large number of variables it involved (more than
a million on average), indicates that it is not a viable option for solving larger instances. The
arc flow-based formulation solved all the instances in one minute on average, requiring only
6000 variables on average, and thus appearing as a good candidate for solving larger instances.
The continuous relaxation of both the arc flow-based and the block-based formulations are
very good, but are almost never equal to an optimal solution. The tiny difference between
the continuous relaxation of the two models can be explained by the fact that a block cannot
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contain twice the same job in the block-based formulation, while this can happen in the arc
flow-based formulation. A similar behavior was already noticed for the bin packing problem
(see Delorme and Iori (2020)).

For comparison purposes, we also ran the arc flow-based formulation without expiration
dates. Even though the results we obtained were competitive (119 instances solved to proven
optimality with an average running time of 2 minutes), using expiration dates is strictly better
as it reduces by approximately 75% the model size. We thus adopted the expiration dates in
all subsequent tests.

The metaheuristic was extremely fast (less than a second on average), and produced good
quality solutions as the absolute gap with respect to the optimal solution was less than 7 on
average. In the following, we provide more detailed results in which the instances are grouped
by ratio of jobs per machine (Table A.4), delay factor range (Table A.5), and maintenance
activity duration range (Table A.6).

Table A.4: Evaluation on instances with 2 machines, results grouped by n/m ratio

n/m method # opt. TT TP LB UB nb. var. nb. cons. nb. nzs

10

Position 0 3597.6 0 499.1 516.4 3109 3162 17 888
Event 20 2135.3 0 513.2 514.8 901 1742 7322
Block 40 138.0 0 514.8 514.8 16 415 22 108 220
Arc flow 40 3.2 0 514.8 514.8 1475 801 5857
ILS - 0.4 - - 520.4 - - -

15

Position 0 3596.7 0 791.0 819.4 7069 7152 41 248
Event 9 2853.9 0 811.5 816.1 1951 3812 16 382
Block 29 1189.4 0.4 815.7 815.8 461 919 32 3 846 625
Arc flow 40 48.0 0 815.7 815.7 4958 2556 19 768
ILS - 0.5 - - 822.1 - - -

20

Position 0 3599.3 0 979.1 1051.7 12 629 12 742 74 208
Event 3 3383.9 0 1035.0 1043.6 3401 6682 29 042
Block 21 1926.4 3.5 1042.7 1042.8 3 703 590 42 32 508 319
Arc flow 40 129.7 0 1042.8 1042.8 11 699 5236 46 714
ILS - 0.7 - - 1050.8 - - -

The results from Table A.4 indicate that instances become more difficult to solve as the
ratio of jobs per machine n/m increases. This is particularly evident for the block-based
formulation, which solved all the instances with n/m = 10 but only half of the instances with
n/m = 20, and for the arc flow-based formulation, which solved all instances with n/m = 10

in 3 seconds on average but took more than 2 minutes on average to solve instances with
n/m = 20. This is not surprising because the number of feasible blocks and the number
of relevant intermediary accumulated factors increases with the number of jobs, resulting in
an increase in the number of variables for both formulations. The big-M formulations too
obtained better results for n/m = 10 (absolute gaps – computed as the difference between the
upper bound and the lower bound found by the model – around 17 for the position-based and
1.5 for the event-based) than for n/m = 20 (absolute gaps around 70 for the position-based
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and 8.5 for the event-based). The metaheuristic was not particularly impacted by the ratio of
jobs per machine, as it obtained an absolute gap with respect to the optimal solution around
6 for n/m = 10 and equal to 8 for n/m = 20.

Table A.5: Evaluation on instances with 2 machines, results grouped by delay factor range

dij range method # opt. TT TP LB UB nb. var. nb. cons. nb. nzs

[1.01,1.06]

Position 0 3597.4 0 740.49 784.51 7602 7685 44 448
Event 6 3369.1 0 774.05 780.42 2084 4079 17 582
Block 35 1797.7 2.6 779.90 779.98 2 744 176 32 24 036 514
Arc flow 60 110.4 0 779.96 779.96 11 023 5196 44 032
ILS - 0.5 - - 788.71 - - -

[1.05,1.10]

Position 0 3598.4 0 772.26 807.16 7602 7685 44 448
Event 26 2213.0 0 799.09 802.57 2084 4079 17 582
Block 55 371.5 0 802.20 802.21 43 773 32 272 262
Arc flow 60 10.2 0 802.21 802.21 1064 533 4194
ILS - 0.6 - - 806.79 - - -

The results displayed in Table A.5 show that instances are more difficult to solve when
the jobs have smaller delay factors dij . This is true for all models (e.g., the block-based
formulation could solve 35 instances with small delay factors, while it could solve 55 instances
with large delay factor) and also for the metaheuristic (as the absolute gap with respect to
the optimal solution is around 9 for low delay factors while it is around 4.5 for large delay
factors). This behaviour is expected for the arc flow-based and the block-based formulations,
because the number of jobs per block decreases as the delay factors of the jobs increase, thus
resulting in models in fewer variables.

We observe in Table A.6 that instances are more difficult to solve when the maintenance
activities ti have longer duration. This is evident for all models (e.g., the arc flow-based
formulation could solve all instances with shorter maintenance duration in 14.1 seconds on
average, while it took 40 seconds on average to solve instances with longer maintenance
duration) and the metaheuristic. This can be explained by the fact that the number of jobs
per block increases as the maintenance activity duration increases, resulting in additional
variables for the arc flow-based and the block-based formulations.

A.6.2 Computational results on medium and large size instances

We tested the arc flow-based formulation and the ILS on the remaining instances having
5, 10, and 20 machines. We display the results we obtained in Tables A.7–A.9. In each
table, column “group” indicates the criterion used to aggregate the instances into groups, and
column “# inst.” indicates the number of aggregated instances per group. The other columns
are identical to those displayed in the previous tables. We opted not to report the relative
gaps in this section as the quality of the lower bound obtained by the arc flow-based model
was inconsistent and could even reach 0 sometimes when the model was not able to solve the
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Table A.6: Evaluation on instances with 2 machines, results grouped by maintenance duration
ti

ti range method # opt. TT TP LB UB nb. var. nb. cons. nb. nzs

[1,3]

Position 0 3598.7 0 765.25 786.91 7602 7685 44 448
Event 21 2416.9 0 782.16 783.60 2084 4079 17 582
Block 49 915.3 0.1 783.45 783.46 92 834 32 641 860
Arc flow 60 14.1 0 783.46 783.46 1637 895 6486
ILS - 0.6 - - 787.76 - - -

[1,9]

Position 0 3597.1 0 747.50 804.77 7602 7685 44 448
Event 11 3165.2 0 790.98 799.38 2084 4079 17 582
Block 41 1253.9 2.6 798.65 798.73 2 695 115 32 23 666 916
Arc flow 60 106.5 0 798.71 798.71 10 451 4834 41 740
ILS - 0.5 - - 807.74 - - -

linear relaxation in an hour. We focus instead on the quality of the upper bounds provided
by the two tested approaches.

Table A.7: Evaluation on instances with 5 machines

group # inst. method # opt. TT TP LB UB nb. var. nb. cons. nb. nzs

n/m = 10 40 Arc flow 1 3600 0.1 515.99 516.24 71 613 29 763 286 201
ILS - 2.1 - - 524.16 - - -

n/m = 15 40 Arc flow 0 3600 0.3 777.55 777.75 224 008 84 430 895 660
ILS - 3.0 - - 787.20 - - -

n/m = 20 40 Arc flow 0 3600 0.6 1038.26 1038.46 478 514 164 100 1 913 558
ILS - 3.8 - - 1049.72 - - -

dij ∈ [1, 6] 60 Arc flow 0 3600 0.6 766.14 766.43 491 081 176 263 1 963 948
ILS - 2.6 - - 778.50 - - -

dij ∈ [5, 10] 60 Arc flow 1 3600 0 788.40 788.53 25 010 9266 99 664
ILS - 3.3 - - 795.55 - - -

ti ∈ [1, 3] 60 Arc flow 0 3600 0 772.77 772.91 37 908 16 377 151 257
ILS - 3.3 - - 779.42 - - -

ti ∈ [1, 9] 60 Arc flow 1 3600 0.6 781.77 782.06 478 182 169 152 1 912 356
ILS - 2.7 - - 794.63 - - -

Overall 120 Arc flow 1 3600 0.3 777.27 777.48 258 045 92 764 1 031 806
ILS - 3.0 - - 787.03 - - -

We observe in Table A.7 that the arc flow-based formulation could only solve one instance
to optimality among the 120 instances with 5 machines. However, the average absolute gap
between the upper and lower bounds obtained is very small (around 0.2 on average). The
metaheuristic was very fast but the solutions it obtained were around 10 units longer on
average than those found by the arc flow-based formulation. Interestingly, we only observe a
minor impact of the tested parameters on the absolute gaps obtained by the arc flow-based
formulation:

• The absolute gap is around 0.2 for each ratio n/m;

• The absolute gap for short delay factors is around 0.3, while it is around 0.1 for long



A.6. Computational experiments 117

delay factors;

• The absolute gap for short maintenance duration is around 0.1, while it is around 0.3
for long maintenance duration.

Similarly to what was noticed for instances with 2 machines, we observe that the meta-
heuristic tends to find better quality solutions for instances with long delay factors and short
maintenance duration, while it is not particularly impacted by the average ratio n/m.

Table A.8: Evaluation on instances with 10 machines

group # inst. method # opt. TT TP LB UB nb. var. nb. cons. nb. nzs

n/m = 10 40 arc flow 0 3600 1.2 516.75 517.51 904 542 314 498 3 617 176
ILS - 8.2 - - 541.67 - - -

n/m = 15 40 Arc flow 0 3600 2.4 748.31 774.14 2 033 046 657 109 8 130 689
ILS - 12.1 - - 778.64 - - -

n/m = 20 40 Arc flow 0 3600 6.5 938.12 1122.26 5 040 395 1 450 953 20 159 585
ILS - 17.0 - - 1050.35 - - -

dij ∈ [1, 6] 60 Arc flow 0 3600 6.6 686.32 826.40 5 151 331 1 566 014 20 603 831
ILS - 11.1 - - 778.61 - - -

dij ∈ [5, 10] 60 Arc flow 0 3600 0.1 782.47 782.87 167 324 49 026 667 801
ILS - 13.8 - - 801.83 - - -

ti ∈ [1, 3] 60 Arc flow 0 3600 0.4 769.61 770.04 340 493 127 799 1 360 478
ILS - 13.4 - - 777.77 - - -

ti ∈ [1, 9] 60 Arc flow 0 3600 6.4 699.17 839.23 4 978 162 1 487 241 19 911 155
ILS - 11.5 - - 802.67 - - -

Overall 120 Arc flow 0 3600 3.4 734.39 804.63 2 659 328 807 520 10 635 816
ILS - 12.5 - - 790.22 - - -

In Table A.8, we focus on the 120 instances with 10 machines. We notice that the arc
flow-based formulation could not solve any instance to proven optimality. The average gap
between the upper and lower bounds vary significantly depending on the tested parameters:
for instances with short maintenance duration, long delay factors, and small n/m ratio, the
absolute gap was less than 0.8 on average, while it was significantly higher for the other
instances, even reaching 140 on average for instances with high maintenance duration. The
behavior of the metaheuristic is relatively similar to what was observed for instances with 2
and 5 machines. We notice here for the first time that the metaheuristic found better solutions
(upper bound equal to 790.22 on average) than the arc flow-based formulation (upper bound
equal to 804.63 on average). By studying the distribution of parameter ∆, which we define as
the difference between the upper bound obtained by the ILS and the upper bound obtained
by the arc flow-based model (i.e., ∆ = UBILS−UBAF ), we report that ∆ is equal to -14.41 on
average, but its median is equal to 8.87. This indicates that UBAF < UBILS for a majority
of instances, but in the rare cases in which UBAF > UBILS , the difference is significant (up
to approximatively 930). Further analysis outlined that the upper bound obtained by the arc
flow-based model is particularly bad for instances in which most of the computation time is
spent on computing the lower bound.
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Table A.9: Evaluation on instances with 20 machines

group # inst. method # opt. TT TP LB UB nb. var. nb. cons. nb. nzs

n/m = 10 40 Arc flow 0 3600 12.9 428.16 630.39 8 771 690 2 584 382 35 082 775
ILS - 35.2 - - 535.29 - - -

n/m = 15 40 Arc flow 0 3600 43.9 587.08 991.11 28 817 601 7 058 348 115 264 422
ILS - 53.2 - - 789.44 - - -

n/m = 20 40 Arc flow 0 3600 94.5 655.55 1283.72 38 341 270 8 760 478 153 577 723
ILS - 83.1 - - 1062.14 - - -

dij ∈ [1, 6] 60 Arc flow 0 3600 99.9 328.39 1150.58 49 490 269 12 000 939 198 102 178
ILS - 50.5 - - 787.31 - - -

dij ∈ [5, 10] 60 Arc flow 0 3600 1 785.47 786.23 1 130 105 267 866 4 514 435
ILS - 63.9 - - 803.93 - - -

ti ∈ [1, 3] 60 Arc flow 0 3600 4.2 693.53 851.68 3 555 787 1 134 663 14 217 164
ILS - 59.9 - - 795.08 - - -

ti ∈ [1, 9] 60 Arc flow 0 3600 96.7 420.33 1085.14 47 064 587 11 134 141 188 399 449
ILS - 54.4 - - 796.16 - - -

Overall 120 Arc flow 0 3600 50.5 556.93 968.41 25 310 187 6 134 402 101 308 307
ILS - 57.2 - - 795.62 - - -

Unsurprisingly, we observe in Table A.9 that for instances with 20 machines the arc flow-
based formulation also obtains better results for instances with short maintenance duration,
long delay factors, and small ratio n/m. The behavior of the metaheuristic is very satisfactory,
as it now outperforms the average solution provided by the arc flow-based formulation on all
types of instances, with a single exception on those with large delay factors. The average
computational effort of the ILS is around one minute, and ranges between 35 seconds for
n/m = 10, to 83 seconds for n/m = 20, on average.

A.7 Conclusion

We studied the problem of processing a set of jobs on a set of unrelated parallel machines
by considering sequence-dependent deterioration and the option of restoring a machine to its
full operational speed by performing a maintenance activity. We reviewed an integer non-
linear programming formulation from the literature, and introduced four novel mixed integer
linear programming formulations. We derived two properties from the literature that allowed
us to improve the performance of the models. In addition, we developed a new metaheuristic
approach, based on the concept of iterated local search, to provide good quality solutions for
large size instances.

We tested all our approaches with an extensive set of computational experiments. Among
the mathematical models, we observed that the arc flow-based formulation was the one pro-
viding the best results on average: it could solve to proven optimality all instances with 2
machines, and obtained good quality solutions for most instances with 5, 10, and 20 machines.
We also noticed that, due to the large number of variables it requires, the arc flow-based for-
mulation could have a large optimality gap, and thus be outperformed by the metaheuristic
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in terms of running time and solution value. This happened mostly on instances with 20
machines. We also outlined specific parameters that made the instances easier to solve by
our approaches (namely, small n/m ratio, short maintenance time, and long delay factors).

Interesting future research directions concern the development of a branch-and-price al-
gorithm for the block-based formulation and the investigation of maintenance scheduling
problems with sequence-dependent deterioration with alternative objective functions, such as
weighted completion time, weighted earliness or weighted tardiness functions.
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Appendix B

Minimizing User Inconvenience and
Operational Costs in a Dial-a-Flight
Problem for Air Safaris

We study a Dial-a-Flight Problem faced by one of the major safari airline companies in
Tanzania. Given a set of daily passenger requests and a fleet of heterogeneous airplanes, the
problem requires to determine the best set of itineraries to transport the passengers from
their origins to the requested destinations within specific time windows, while satisfying a
number of operational constraints. The aim is to minimize user inconvenience, measured by
delays with respect to the pre-defined time windows and by the number of intermediate stops
in the itineraries, and operational cost. The problem is complicated by the high number of
daily requests in peak touristic periods, and by the fact that refueling is possible only at a
limited number of airstrips. We solve the problem by means of an adaptive large neighborhood
search, which we enrich with local search operators and a set partitioning model. Extensive
computational tests on real-world instances prove the effectiveness of the proposed algorithm,
which can improve the solutions found by the company both in terms of operational cost and
user inconvenience, in reasonable computational time.

B.1 Introduction

Tanzania is an Eastern African country with many tourist attractions,as national parks,
conservation areas, reserves and marine parks. These include popular tourist destinations,
such as the island of Zanzibar and the UNESCO World Heritage site of Mount Kiliman-
jaro. These attractions make tourism the largest foreign source of income for the country,
contributing with an average of 2 billion U.S. dollars per year since 2012, which is roughly
equivalent to 25% of all foreign exchange earnings. Tourism also contributes to more than
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17% of the national gross domestic product, creating more than 1.5 million jobs and being
the fastest growing sector (National Bureau of Statistics, Tanzania, 2018).

Many pioneering entrepreneurs were quick in identifying tourism as the true national
vocation of Tanzania. In early years, tourism gave life to a great number of vehicle-based
safari companies, which opened the country to a new surge of visitors. It is around 30 years ago
that some companies recognized the opportunity to develop an airline safari network capable
of accessing the most remote parts of the country, offering more agile and comfortable services
to the visitors.

Currently, these companies operate on a network composed by more than 100 airstrips,
connecting not only the main cities and tourist sites in the country, but also far-away des-
tinations located in the middle of the park areas (see Figure B.1 for a condensed view of
Tanzania’s airstrip network). Flights between these airstrips are performed by means of fleets
of small airplanes, each transporting around a dozen passengers. For most companies, flights
are organized on a daily basis, combining in the best possible way the travel bookings re-
ceived. The transport is done under tight constraints imposed by hard operational conditions,
including the lack of refueling options in many of the airstrips, and the need to provide a high
level service to the customers.

Figure B.1: Main airstrip network in Tanzania (image taken from http://www.coastal.co.tz/)

This article studies the operations of one of the major safari airline companies in Tanzania.
The company has a fleet of around 20 airplanes comprising two models, the high-wing braced
cabin monoplane Cessna Caravan-208B and the single-engine turboprop Pilatus PC12. The
two models have a similar capacity in terms of passengers transported, but significant differ-
ences in speed, fuel consumption, cabin comfort, and maximum cargo weight. Each airplane
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starts from a given airstrip and may end its daily sequence of flights at a different airstrip.
Transport requests for a certain day are collected until the previous day and then pro-

cessed, at the company headquarters, so as to form the best set of flights. Each request
consists of an itinerary from a given origin airstrip to a given destination airstrip, to be per-
formed within a specific time window both at the pickup and at the drop-off sites. Possible
violations of the time windows are accepted but penalized (in other words, these are soft time
windows). All clients should be able to reach their destination with a maximum of three inter-
mediate stops. The number of intermediate stops is not only a constraint, but also a crucial
parameter to be taken into account in the evaluation of the user inconvenience. Passengers
may also select two different, and not exclusive, additional classes of service: a passenger in
fast class is guaranteed to reach his destination without any intermediate stop; a passenger
in extra-luggage class has the right to transport an additional piece of luggage on board,
resulting in a maximum of 30 kg instead of 15 kg. At most airstrips, takeoffs and landings
must be performed in daylight as there is no artificial lighting system. This corresponds to
a hard time window that cannot be violated. Fuel is available only at certain airstrips. In
addition, for safety reasons, a minimum quantity of fuel after landing and a maximum weight
before takeoff are imposed.

The aim of the company is to combine the daily requests into a set of flights, in such
a way that: (i) all requests are fulfilled; (ii) all operative constraints are satisfied; (iii) user
inconvenience, measured by delays in the time windows and number of intermediate stops,
is minimized; and (iv) operational costs as well are minimized. Operational costs (which are
discussed in detail in Section B.2 below) are caused by daily fees for the use of an airplane,
number of kilometers traveled, refueling, and landing fees at airstrips. In the following, we
refer to this problem as the Dial-a-Flight Problem for Air Safaris (DAFPAS).

The DAFPAS belongs to the category of Dial-A-Flight Problems (DAFP). This class of
problems has received increasing attention in recent years in the contexts of taxi transporta-
tion (Espinoza et al., 2008a,b) and of air safari planning (Fügenschuh et al., 2013). The
work by Fügenschuh et al. (2013) is the one that most resembles ours, but they study a
problem with a different objective function, different constraints, and smaller instance sizes
(as discussed in detail in Section B.3 below). The DAFP is one of the key problems arising
in air passenger transportation, and differs from other classical airline scheduling problems
(see, e.g., Klabjan 2005) because the planning changes on a daily basis instead of making
use of structured medium-term or long-term schedules. The DAFP is more similar to the
well-known Dial-a-Ride Problem (DARP), which is usually studied in the context of ground
transportation vehicles (Cordeau and Laporte, 2007; Doerner and Salazar-González, 2014),
and to other transportation on demand problems (Cordeau et al., 2007), with which it shares
the need of identifying a user inconvenience function. All such problems are not only NP-
hard, but also very difficult in practice, and instances of large size cannot be solved exactly
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within limited computing times.
The aim of this paper is to propose a methodology to quickly obtain good-quality solutions

for the real-world DAFP that we describe. To this aim, we develop an Adaptive Large Neigh-
borhood Search (ALNS) metaheuristic, which relies on several destroy and repair mechanisms.
We also embed into the ALNS a set of local search procedures to explore more intensively the
neighborhoods around promising solutions, and adopt a Set Partitioning (SP) model to itera-
tively post-optimize the pool of routes that has been built during the search. Recently, ALNS
methods have obtained very good results on a large number of vehicle routing problems (see,
e.g., Ropke and Pisinger 2006 and Pisinger and Ropke 2010). Still in the field of routing, the
combination of ALNS with local search have led to good results (as in, e.g., Dell’Amico et al.
2016), as well as the use of SP models as post-optimization tools (as in Subramanian et al.
2013). Convincing results have also been obtained by similar approaches on the closely related
DARP, by local search based metaheuristics (Parragh et al., 2010; Masmoudi et al., 2017)
and by ALNS algorithms (Masson et al., 2013; Gschwind and Drexl, 2019). In our study, the
combined use of ALNS with local search and an SP model led to prominent computational
results, achieving good-quality solutions with limited computational effort.

The main contributions of this paper are as follows:

• We describe in detail a real-world transportation on demand problem and we contrast it
with the existing literature. The interest derives not only from the particular application
at hand, but also from the fact that the problem is very general and may well represent
several other situations arising in passenger transportation.

• We perform a deep study of the user inconvenience function, which is measured as the
violation of pickup and drop-off time windows and the number of intermediate stops.
An economic interpretation of the user inconvenience has been defined in agreement
with the company.

• We design a new metaheuristic based on the ALNS paradigm. Some operators have
been adapted from the existing literature, whereas others have been newly designed on
the basis of the specific characteristics of the problem at hand.

• We use an SP model to attempt recombining the routes explored during the ALNS
search. The model is used in an iterative manner, with the aim of determining the best
balance between ALNS and SP computational efforts.

• We present extensive computational tests on a set of real-world instances. The outcome
shows that the presented algorithm is effective in improving the solutions found by
the company, achieving lower cost and lower user inconvenience, on average, within
limited computational times, and hence can be considered as a good solution tool for
the problem.
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The remainder of this paper is organized as follows. Section B.2 provides a detailed
description of the DAFPAS. Section B.3 reviews the related scientific literature. A formal
mathematical formulation of the problem is provided in Section B.4. Section B.5 contains the
details of the metaheuristic algorithm that we developed. The result and analysis of extensive
computational experiments that we performed on a set of real-world instances are given in
Section B.6. Some final conclusions and future research avenues are drawn in Section B.7.

B.2 Problem Description

The DAFPAS lies in the class of DAFP, but contains a number of specific characteristics
induced by its application context. In this section, we describe the problem characteristics in
detail and present some assumptions that we made to produce a good model.

B.2.1 Airstrips and Network

We are given a set of 21 airstrips, that represent the vertices of a complete undirected
graph. Each airstrip is characterized by the fact that it can be used for refueling or not. Each
airplane landing at an airstrip without refueling should always have in its tank a minimum
quantity of fuel, imposed by security rules. The path to be followed for flying from an airstrip
to another is known, and so is the distance to be traveled and the expected flight time and
fuel consumption.

For each airstrip, a maximum allowed weight at take off for each airplane (see also Section
B.2.3) and a landing fee are imposed. A minimum time in which an airplane is required to
remain on the ground between a landing and the next takeoff is also imposed. This time,
called ground time (and being around 20–30 minutes in our real-world application), depends
on the airstrip and comprises the operational time for alighting/boarding passengers, the
possible need for refueling, and a break time for the pilot.

Operations at an airstrip are allowed only within a daily time window. Indeed, for most of
the airstrips, takeoffs and landings must happen in daylight. We thus set the operating time
window to [6:00 am, 6:30 pm] in our tests. For some other airstrips, namely, Dar es Salaam
and Arusha (see Figure B.1), earlier departures starting from 5:30 are allowed because of the
presence of artificial light and an air control tower.

B.2.2 Requests

We are given a set of a transportation requests, each with given origin and destination
airstrips. The majority of requests is associated with a single passenger. Under this assump-
tion, it is possible that passengers that booked the air safary as a group be split into different
flights. This is allowed by our methodology, and by the company as well, but does not occur
frequently because optimization tends to group passengers with the same origin, destination
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and time windows on the same flights. Some requests (around 14% of the total) are composed
by more than one passenger. These correspond to families with children, who cannot be sep-
arated from a parent. Each passenger is characterized by a type (male, female, or child) and
a class (standard, fast-class, extra-luggage, or combined fast-class and extra-luggage). This
information is used to compute the expected weight of a request and the maximum number
of intermediate stops between pickup and drop-off.

Each request has a specific time window both at the pickup and at the drop-off airstrips.
At the time of booking, target pickup and drop-off times have been defined. The time windows
are simply intervals set around these target times. In our case study, the intervals last one hour
(half an hour before and half an hour after the target time) and correspond to a discrepancy
with respect to the target that is supposed to be accepted without inconvenience by the
clients. Early or late arrivals with respect to these time windows are still accepted, but
penalized (see Section B.2.5 for details). In such cases, passengers are required to be at the
pickup locations at the new arranged pickup time, and ground transportation services that
will take care of the passengers after their landing should be at the drop-off locations at the
new arranged arrival time. Both times are communicated the day before. Note that it is not
expected that an airplane wait in case of early arrival. We simply suppose that passengers
and ground services will be able to reach the new airstrip within the new arranged time, as
this was communicated in advance. Waiting is allowed in case it helps minimize the total
user inconvenience of a route (and this is indeed at the basis of one or our solution methods
in Section B.5 below). Considering the size of the instances we tackle, we observe that the
number of requests per day may vary from about 100 requests in the months of lowest demand,
to about 350 requests in the months of highest demand.

B.2.3 Airplanes

We are given a heterogeneous fleet of airplanes. Each airplane has a certain cruise speed,
which determines the traveling time between two airstrips, and a certain fuel consumption,
discussed in detail in Section B.2.4. An airplane is also characterized by a number of seats
for passengers, a maximum allowed total weight for taking off, and a maximum fuel capacity.
In real applications, the total weight for taking off depends not only on the airplane, but also
on the airstrip, because airstrips with higher altitude offer lower air lift. As the differences
between the airstrips are very small in our case study, we assumed that each airplane has a
unique value of maximum weight for taking off.

Note that the weight of an airplane depends on both the transported passengers and the
quantity of loaded fuel, and this represents a key decision variable when building routes. This
happens in any air transportation problem (Cordeau et al., 2007), but is particularly relevant
in our study because refueling is not available in most of the airstrips and the airplanes have
a small size. We can decide to load more passengers at the expense of a lower fuel tank level,
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or, vice versa, to cover longer distances at the expense of a reduced number of transported
passengers. Note also that, after landing at an airstrip, an airplane must have at least the
minimum quantity of fuel required to reach the closest airstrip (in case landing, for any reason,
cannot be performed at the planned airstrip). This is imposed on each intermediate stop and
also on the last stop of a day, to avoid having an airplane stuck at an airstrip without sufficient
fuel.

Each airplane is also associated with a home location. At the beginning of a day, the
airplane is available at the airstrip at which it ended the last flight on the previous day. At
the end of the day, it can be located at any airstrip (provided it has sufficient fuel). Each
airplane should be back to its home location at least once every three days. This is imposed
to perform a required periodic maintenance on the airplane. In our study, we relaxed this
assumption, supposing that each day is independent from the others. However, going back
to the home location can be obtained, in our solution method, by imposing this location as
the last arrival of the day for an airplane. For considering, instead, the original constraint
as in the real-world application, one should model the problem as a dynamic multi-period
problem, to be solved with a rolling horizon approach. The dynamic component is caused by
the fact that requests for day t+1 would be known only when the flights for day t are already
being operated. The resulting problem is left as an interesting future research direction (see
Section B.7).

Concerning the size of the problem, the fleet owned by the company is composed by
around 20 airplanes. In our instances, the number of available airplanes varies between 10, in
the months with lowest demand, to 15, in the months with highest demand. The remaining
airplanes are either unused and parked at their home locations, or in maintenance, or rented
for private safari flights. The use of private flights is quite common for groups aiming at a
higher service level (at a higher cost). It is implicitly assumed that the number of airplanes
is large enough to satisfy all requests, as capacity is taken into account when accepting the
bookings for a given day. Should there be an excess of requests or a shortage of airplanes,
other airplanes could be rented on the market.

B.2.4 Costs

As reported by Cordeau et al. (2007), most studies on transportation on demand problems
fall under two categories: minimizing costs subject to full demand satisfaction and side con-
straints; or maximizing satisfied demand subject to vehicle availability and side constraints.
Our problem belongs to the first category. The costs we incur for serving the requests are
the cost of daily use of each airplane, the cost of the mileage traveled, the fuel consumption,
and the cost for the landings. Let us explain them in more detail.

It is quite common for airline companies with seasonal demand to lease the airplanes
for long periods. In case the number of transportation requests increases, new airplanes are
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rented. As far as we are concerned, we deal with a problem where the company has at its
disposal the entire fleet of airplanes. In the short-term, this means that the fixed cost of
each airplane is only composed by its flight tax. Every day, and for each used airplane, the
company pays a mandatory fee to the Tanzania Civil Aviation Authority (TCAA). Clearly,
any used airplane has a certain fixed cost whose value does not affect the cost of a route.
Nevertheless, the fixed costs gain in importance in the long-term view, especially for deter-
mining the economical sustainability of the activity. For this reason, in our computational
tests (see Section B.6 below) we evaluated two scenarios, one in which the daily cost simply
amounts to its mandatory fee, and another in which it also includes the daily operating cost
composed of staff salary and amortization.

It is common for most of the companies operating routing services with fleets of vehicles
to impose a cost for each kilometer traveled. This also happens for our case study, where this
cost is considered independent from the type of airplane and takes into account the direct
expenses and maintenance.

Refueling may take place at a limited set of airstrips. The cost of the gasoline changes
from one location to another, although very slightly. In our model, we assumed it to be
equal for all airstrips, so as to simplify the refueling evaluation. The fuel consumption cost
is then determined as the cost per liter multiplied by the number of liters consumed. The
determination of the fuel consumption for an airplane is a complex task that would require to
consider flight conditions (e.g., weather) and the path between departure and arrival airstrips
(e.g., acceleration, deceleration, turns, difference in altitudes). We decided to adopt the same
simplified criterion adopted by the company for the evaluation of the fuel consumption. We
simply use a given linear consumption for flights that last an hour or less. By multiplying the
number of traveled minutes by this parameter, we obtain the total liters consumed in a flight.
For longer flights, the consumption in the first hour is computed using the first parameter,
and the remaining consumption is obtained by multiplying the remaining time by a second,
smaller, fuel consumption parameter. The second parameter is smaller than the first, because
in shorter flights fuel consumed during landing and takeoff has a higher impact on the overall
fuel consumed and also because the airplane does not reach a high altitude, thus encountering
a higher air resistance.

Any time an airplane lands, a corresponding landing fee should be paid to the TCAA.
This fee is independent from the airstrip at which the landing occurred.

B.2.5 User inconvenience

User inconvenience is a measure of the dissatisfaction of a passenger, and should be min-
imized together with the operational costs. In our case, we opted to measure the number of
intermediate stops, and the amount of violation of the time windows, both at the pickup and
at the drop-off locations. The intermediate stops are already limited to a maximum of three
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for a standard passenger and to one for a fast-class one, but on top of that they should also be
minimized, as highly disliked. The time window violation is considered both for early arrivals
(as the difference between the earliest time and the arrival time if the arrival occurs before
the earliest time) and for late arrivals (as the difference between the arrival time and the lat-
est time if the arrival occurs after the latest). The total time window violation, expressed in
minutes, is multiplied by a first penalization parameter, and the total number of intermediate
stops by a second parameter. The values of these parameters have been established on the
basis of discussions with the company, but, in addition to that, we performed extensive tests
to assess their impact on the solutions.

We note that the time window violation is related to total riding time, waiting time and
duration, which are other measures adopted in the DARP context where a single time window
is imposed on the pickup (Cordeau and Laporte, 2003). We also note that the company allows,
in some cases, transshipment of passengers from an airplane to another in order to reach the
required destinations. This is even more disliked by passengers, for obvious reasons. To look
for low user-inconvenience solutions and obtain a simpler model, we disregarded the possibility
of transshipment in our methodology. Fortunately, we were able to satisfy all requests on all
instances even without transshipment. In Section B.6, in order to evaluate the cost of the
company solutions, transshipments, if any, have been penalized doubly compared to the cost
of an intermediate stop.

B.3 Literature Review

The DAFPAS lies in the class of Pickup and Delivery Problems (PDPs), where requests
are characterized by a point in which they need to be collected and a second point where
they have to be delivered (see Battarra et al. 2014 and Doerner and Salazar-González 2014
for recent surveys). Among PDPs, the closest problem to the DFAPAS is the DARP, which
requires to meet pickup and delivery transport demands by using a fleet of ground vehicles
while minimizing cost and user inconvenience. The number of papers devoted to the solution
of practical DARP has risen consistently in recent years, as can be noticed in, e.g., Cordeau
and Laporte (2007) and Ho et al. (2018). Important differences arise between the DARP
and the DAFPAS, in the definition of the constraints (e.g., there is no fuel restriction for the
DARP), of the costs (e.g., there is no landing fee for the DARP) and of the user inconvenience
(which is more related to time spent on board for the DARP, and on number of intermediate
stops for the DAFPAS).

We can include the DAFPAS in the areas of Transportation on Demand and Air Trans-
portation. Transportation on demand concerns the relocation of passengers or goods between
given origins and destinations, following specific requests by the users. Cordeau et al. (2007)
give a description of this area, providing mathematical models for DARP services, urban
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courier transportation, ambulance fleet management, as well as static and dynamic DAFP.
Air transportation is a wide area of research characterized by a variety of optimization prob-
lems. We refer the interested reader to the surveys by Barnhart et al. (2003) and Lacasse-Guay
et al. (2010), to the book by Wensveen (2016), and to the recent case studies by Cacchiani
and Salazar-González (2020) and Parmentier and Meunier (2020).

A number of relevant works combine air transportation with transportation on demand.
Desaulniers et al. (1997) solved the daily aircraft routing and scheduling problem, which
consists in constructing daily schedules for a heterogeneous aircraft fleet, with the aim of
minimizing the fixed cost for each aircraft, the cost of the fuel consumed and the salaries
of the crew members. They proposed SP and time constrained network flow formulations,
and obtained good results by employing column generation. Keskinocak and Tayur (1998)
addressed the time-shared jet aircraft scheduling problem, which can be seen as a DAFP where
each aircraft can serve only one customer at a time. They studied the problem complexity and
proposed solution methods based on Dynamic Programming (DP) and Mixed Integer Linear
Programming (MILP). Ronen (2000) developed a decision support system based on the use
of an SP model for scheduling charter airplanes. They minimized an objective function that
included a number of operational costs and penalties for violations of soft constraints.

Martin et al. (2003) considered on-demand aircraft schedules for the so-called fractional
aircraft programs (FAP). In a FAP, fractional owners purchase portions of specific aircraft
from a management company, based on the number of actual flight hours they need. They
are guaranteed access to an aircraft whenever and wherever they need it, by booking their
service in advance. The authors present a management system that includes a MILP model
for scheduling the aircraft. Similar FAPs were later studied by Yao et al. (2008), who discuss
strategic planning issues, such as aircraft maintenance, crew swapping, and methods to in-
crease and differentiate demand, and by Yang et al. (2008), who propose a scheduling decision
support tool based on exact and heuristic algorithms aimed at increasing aircraft utilization.

Fagerholt et al. (2009) consider an air taxi service in Norway. Air taxi is an on-demand
service in which customers can book in advance seats on aircraft operating on small regional
airports. They presented a strategic decision support tool that helps estimate the trade-off
between fleet size and service by heuristically solving an underlying DAFP. A similar problem
involving a Belgian company has been studied by Van der Zwan et al. (2011), who developed
an SP model. Very recently, Munari and Alvarez (2019) considered a FAP in which the aim is
to determine airplane routing and scheduling to fulfill a list of flight requests. They propose
a compact MILP model that takes into account mandatory aircraft maintenance and possible
flight upgrades.

A typical feature of the DAFPAS is the limited fuel capacity. Other optimization problems
with this feature have been considered in the literature. That is the case, for instance, in the
Green Vehicle Routing Problem, which concerns fleets composed by alternative fuel-powered
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vehicles and helps in overcoming difficulties due to limited vehicle driving range in conjunction
with limited refueling infrastructure (see, e.g., Bektaş et al. 2016). A restricted operational
range caused by limited fuel capacity is a major concern also in military applications. Solution
approaches in this field have investigated the use of aerial refueling, as in, e.g., Yamani et al.
(1990), Yuan and Mehrez (1995) and Kannon et al. (2015).

A closely related transportation problem concerns on demand routing of helicopters. This
topic has received a good amount of attention in recent years, especially for what concerns the
transportation of rig crews in oil and gas offshore platforms, which was studied, among others,
by Fiala Timlin and Pulleyblank (1992), Menezes et al. (2010), Qian et al. (2012), Hermeto
et al. (2014) and de Alvarenga Rosa et al. (2016). As in our problem, using alternative
vehicles, like vessels, is not an option because of low speed combined with long distances that
need to be covered. The number of stops is also considered, not because of user inconvenience
but for security reasons, as takeoffs and landings are dangerous on offshore platforms.

To the best of our knowledge, the term DAFP originates from the works of Espinoza et al.
(2008a,b). Important differences arise between their problem and the one we face, as they
can refuel at any airport, and they control user inconvenience by imposing hard constraints
on maximum transit time and allowing at most one intermediate stop. In Espinoza et al.
(2008a), the problem is modeled with a multicommodity network flow, having a direct flight
for each pair of airports (a, b) and each departure time at a, and indirect flights (with one
intermediate stop) for each triplet of airports (a, b, c) and each pair of departure times at a and
b. The size of the network grows quickly with the number of airports, so they use aggregation
techniques. They solve to proven optimality instances with up to six airplanes. In Espinoza
et al. (2008b), they consider larger instances. They develop a parallel local search heuristic
that invokes the multicommodity model for smaller instances containing a limited number of
airplanes. Their approach is not practically replicable to our case study because it is based
on the strict assumption that at most one intermediate stop occurs for each passenger. In
related work, Engineer et al. (2011) introduce a column generation approach making use of
a DP that operates on the time-expanded network underlying the previous multicommodity
flow model. They use arc-based resource relaxation, forward and backward search, and a
quick completion heuristic. They provide solutions for instances with up to 200 airplanes.
This approach too depends on the assumption that at most one intermediate stop is allowed.

Another work that is related to our DAFP is the air travel routing and scheduling problem
solved by Fügenschuh et al. (2013). The problem considers restrictions on earliest departure
and latest arrival times, maximum load and flight time, and refueling only at a limited
number of locations. The authors develop and test different problem formulations. The one
that performs better is based on a relaxation of time window constraints, that are then re-
inserted by means of branching. It solves instances having between 8 and 13 airports and
between 10 and 23 requests. This problem is different from our DAFP as it does not include
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user inconvenience and minimizes traveling costs.

B.4 Problem Notation and Mathematical Formulation

We are given a complete undirected graph G = (V,E), where V is the set of airstrips and
E the set of edges connecting all pairs of airstrips. Each airstrip i ∈ V is associated with an
operating time window [ei, li], and with a binary parameter ri taking value 1 if and only if it
is possible to refuel in i. With each edge (i, j) ∈ E we associate a distance dij , a cost cij , a
fuel consumption gij , and a traveling time tij .

We are also given a set S of n requests. Each request s ∈ S has a pickup airstrip s+ ∈ V ,
a delivery airstrip s− ∈ V , a number of passengers πs, a weight ws, a maximum number of
intermediate stops σs, and tentative pickup and delivery time windows [es+ , ls+ ] and [es− , ls− ],
respectively. Requests are satisfied by a fleet F composed of m airplanes. Each airplane f ∈ F
is located at airstrip f+ ∈ V at the beginning of the day, and is associated with a maximum
number of passengers Πf , a maximum fuel capacity Gf , and a maximum weight capacity Wf .
The weight capacity should not be exceeded by the weighted sum of both passengers and fuel.

Let Ωf be the set of all routes of an airplane f ∈ F . For simplicity, let r ∈ Ωf define both a
route and the corresponding route index. A route is a sequence of airstrips r = (r1, r2, . . . , r|r|).
The first airstrip r1 corresponds to the starting depot f+ of f . Let V (r) = {i ∈ V : i ∈ r}
denote the set of airstrips visited by r, and note that |V (r)| ≤ |r| because an airstrip might
be visited multiple times by a route. Let also E(r) = {(r1, r2), (r2, r3), . . . , (r|r|−1, r|r|)} be
the set of edges traversed by the route. The landing fee at an airstrip is denoted by cℓ, and
the daily flight fee for an airplane by cφ. By defining the cost per kilometer as cd and the
cost per liter of fuel as cg, the total cost of a route is consequently given by

cfr = cφ + cℓ(|r| − 1) +
∑

(i,j)∈E(r)
(cddij + cggij). (B.1)

Let us also denote by S(r) ⊆ S the set of requests that are serviced by r. Let r(s+)
denote the index of the vertex of r at which the pickup of s occurs, and r(s−) the index
of the vertex at which the delivery occurs. Let ψs = r(s−) − r(s+) − 1 be the number of
intermediates stops for s. Let also a(i) denote the time in which the airplane arrives at
vertex i ∈ r, considering a(1) as the time in which the airplane is ready for departing at
depot r1. Under this notation, a(r(s+)) gives the pickup time of s and a(r(s−)) its delivery
time. We can thus compute τs+ = max{es+ − a(r(s+)); 0} + max{a(r(s+)) − ls+ ; 0} as the
time window violation, if any, at the pickup point of s. The value of τs+ takes into account
both earliness, in its first component, and lateness, in its second component. Similarly, let
τs− = max{es− − a(r(s−)); 0} + max{a(r(s−)) − ls− ; 0} define the time window violation,
if any, at the delivery point, and τs = τs+ + τs− be the overall violation. Let ρψ and ρτ

be, respectively, the penalization factors associated with intermediate stops and time window
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violations. The total user inconvenience of route r is measured as

ufr =
∑

s∈S(r)
(ρψψs + ρττs). (B.2)

We can thus define the overall objective value associated with route r as

zfr = cfr + ufr . (B.3)

To mathematically formulate the problem, we can represent each route as a column of an
SP model. For airplane f ∈ F , and route r ∈ Ωf , let δfsr be a binary parameter equal to 1 if
request s is served by r, and 0 otherwise. Let yfr be a binary variable taking the value 1 if
route r of airplane f is used, and 0 otherwise. The DAFPAS can be stated as

(SP) min
∑
f∈F

∑
r∈Ωf

zfr y
f
r (B.4)

s.t.
∑
f∈F

∑
r∈Ωf

δfsry
f
r = 1 s ∈ S (B.5)

∑
r∈Ωf

yfr ≤ 1 f ∈ F (B.6)

yfr ∈ {0, 1} f ∈ F, r ∈ Ωf . (B.7)

Objective function (B.4) requires to minimize the sum of the route costs, computed using
(B.3). Constraints (B.5) force each request to be served. Constraints (B.6) state that each
airplane is used at most once, and constraints (B.7) give the variable domain.

For our instances, we find it convenient to consider airplane types instead of airplanes.
Airplanes being of the same model and being located at the same airstrip at the beginning of
the day are said to be of the same type. In other words, all airplanes of the same type can be
interchanged as they can perform the same routes at the same cost. Now, we can re-consider
the fleet F , originally composed by m airplanes, as a fleet F ′ composed by t airplane types,
each having mf airplanes, in such a way that

∑
f∈F ′ mf = m. We can thus reformulate model

(B.4)–(B.7) by replacing F with F ′ and substituting (B.6) with∑
r∈Ωf

yfr ≤ mf f ∈ F ′. (B.8)

Despite this reduction, model SP remains very difficult to solve in practice because it contains
an exponential number of columns. It can be used, however, in two different ways: (i) by
solving the continuous relaxation of SP we can compute the reduced cost of a column, i.e., a
route, and thus estimate how much this route could contribute to a complete solution; and
(ii) by replacing the complete sets Ωf of routes by smaller sets and solving the model to
integer optimality, we can obtain a heuristic solution. Both approaches are employed in our
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metaheuristic method, as outlined in the next section.

B.5 Solution Methodology

To solve the DAFPAS, we implemented a metaheuristic that is based on iterated execu-
tions of an ALNS that is enriched with local search operators and an SP model. The method,
called Iterated ALNS in the following, is summarized in Algorithm 6. It starts by creating a
solution x with a constructive heuristic and a set of local search operators. The routes of this
solution, represented by routes(x) in the pseudocode, are used to initialize an overall pool P
of routes, which is going to be used later by the SP model. Then, the algorithm performs
itermax calls to the inner ALNS procedure. The first iterphase1 times, the ALNS is invoked
with an acceptance criterion that favors diversification and a stopping criterion that allows to
perform a large search. In the remaining iterations, the ALNS is invoked with a more strict
stopping criterion and with an acceptance criterion that favors intensification. Details on the
adopted criteria and parameter values are given in Section B.5.6 below.

Algorithm 6 Iterated Adaptive Large Neighborhood Search
1: procedure Iterated ALNS
2: x← Constructive Heuristic
3: x← Local Search(x)
4: P ← routes(x) ◃ Pool of routes
5: for iter := 1 to itermax do
6: if (iter ≤ iterphase1) then
7: x← ALNS(x, P , acceptance_criterion_1, stopping_criterion_1)
8: else
9: x← ALNS(x, P , acceptance_criterion_2, stopping_criterion_2)

10: end if
11: end-if
12: end for
13: end-do
14: return (x)
15: end procedure

The core part of the solution method is the ALNS, whose pseudocode is provided in
Algorithm 7. At step 1, the iteration counter t is set to 0 and some weight parameters to be
used in the main ALNS loop are initialized. At step 2, it sets the current solution xcurr as the
incumbent received in input. The main loop is performed until the stopping criterion received
in input is met. It considers the current solution xcurr and modifies it by: (i) selecting destroy
and repair operators according to the weights; (ii) applying these operators to perturb xcurr;
and (iii) using local search to improve it. The destroy operator uses a degree of destruction d,
randomly selected in a given interval. Any time a new solution is obtained, pool P is possibly
enlarged with the new routes in the solution. The new solution obtained, xnew, is compared
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to the current one according to the input acceptance criterion. If the decision is to accept
it, then xcurr is set to xnew. In such a case, we also check if xnew improves the incumbent
solution and possibly update it.

After the main loop has been completed, the pool P is used to populate an SP model,
invoked at step 18. This corresponds to the model outlined in Section B.4, but invoked with
the limited number of routes contained in P instead of all possible routes, and with a limited
computational time. Before solving SP to integer optimality, with the aim of reducing the
size of P and consequently the computational time required to solve SP, we first solve, at step
17, the linear relaxation of the model. We use the solution found to compute the reduced
costs of all columns in the pool. The Θ columns of highest reduced cost, whose probability
of entering the optimal SP solution is very low, are removed from P . The solution found
by SP(P ) is then returned to the Iterated ALNS of Algorithm 6, together with the updated
pool of routes. In the remainder of this section, we describe the details of each algorithmic
component.

Algorithm 7 Adaptive Large Neighborhood Search with local search and SP model
1: procedure ALNS(xbest, P , acceptance_criterion, stopping_criterion)
2: set t← 0 and initialize weights wmt
3: xcurr ← xbest
4: while (stopping_criterion not met) do
5: select destroy and repair method using weights wdmt and wrmt
6: generate a degree of destruction d ∈ [dmin, dmax]
7: xnew ← Repair(Destroy(xcurr, d))
8: P ← P ∪ routes(xnew)
9: xnew ← Local Search(xnew)

10: P ← P ∪ routes(xnew)
11: if (Accept(xcurr, xnew, acceptance_criterion)) then
12: xcurr ← xnew
13: if (z(xcurr) < z(xbest)) then xbest ← xcurr
14: end if
15: end-if
16: t← t+ 1
17: update weights wmt
18: end while
19: end-do
20: solve L(SP (P )) and remove from P the Θ columns with higher reduced cost
21: xnew ← SP(P ) ◃ Set Partitioning model
22: if (z(xnew) < z(xbest)) then xbest ← xnew
23: return (xbest, P )
24: end procedure
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B.5.1 Constructive Heuristic

In the hope of quickly obtaining a first starting solution, we developed a constructive
heuristic that is based on the concept of cheapest insertion and that builds routes in a parallel
fashion. It opens m routes, one per airplane f , considering its departure airstrip f+. Then,
it attempts to extend the routes by inserting requests from S, one at a time. The requests
are sorted in random order and then selected according to it. Their insertion in the routes is
attempted by considering only a restricted set of positions. Let us consider a generic request
s to be inserted in a route r. We define four types of insertions:

(i) s in inserted as first request in r. This insertion is attempted only if r is still empty. In
such a case, r is expanded by including s+ and s−, one after the other, directly after
f+. The insertion of s+ is skipped if s+ = f+. The starting time is computed so as to
be exactly on time for the pickup in s+;

(ii) s in inserted as last request in r, so s+ and s− are inserted at the end of r. The insertion
of s+ is skipped if it is equal to the last airstrip visited by r. The departure time at the
beginning of r is not changed after the insertion, so cost and user inconvenience can be
computed quickly;

(iii) s is inserted only if both s+ and s− are already contained in r. In this way, the airplane
operating r needs no detour to pick up and drop off the additional passenger(s), but
the feasibility of all constraints must still be checked;

(iv) s is inserted only if s+ is already in the route, and in this case s− is inserted as last
airstrip visited by r.

Once a request has been selected, all routes are scanned with respect to the four defined
types of insertion, and the one being feasible, if any, and having cheapest insertion cost is
selected. The procedure is iterated until all requests have been served or there is no more space
for further insertions. It is worth noting that no polynomial-time heuristic can guarantee to
find a feasible solution for the DAFPAS, because this is a difficult task (indeed, just loading
weights ws into the airplanes by respecting capacities Wf is as hard as the classical bin
packing problem). For this reason, we include the heuristic in a loop that is iterated, each
time creating a new random order of requests, until a feasible solution is obtained. In our
tests, we managed to obtain a feasible starting solution for each instance with at most two
iterations of the loop. At the end of the loop, if a feasible solution using strictly less than |F |
routes is found, the remaining unused routes are removed and the associated airplanes are
simply kept in their original locations.
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B.5.2 Destroy Operators

We have implemented Random-removal, Worst-removal, All-removal, and Service time and
Distance oriented removal operators, which are quite common in the ALNS literature (Pisinger
and Ropke, 2010). All operators receive in input a solution x composed by |routes(x)| routes
and a percentage value d representing the degree of destruction. The value of d is randomly
selected, at each ALNS iteration, in the interval [dmin, dmax]. In Random-removal, Worst-
removal, and All-removal, d represents the percentage of the number of routes affected by the
destruction. For Service time and distance oriented removal, d is the percentage of requests
relocated. The output of a destroy operator is a partial solution where some requests and/or
some airstrips have been removed from the preexisting routes. All routes obtained after
destruction are elaborated in order to preserve feasibility. The removed requests will be
reinserted by means of the repair operators.

Random Removal. It randomly selects, with uniform distribution, a route r in x. Then,
it randomly selects a vertex ri in r and removes it. All requests that depart from or arrive
at ri are removed as well from r. The route is then processed, so as to recompute costs and
user inconvenience. The process is repeated ⌈|routes(x)|d/100⌉ times.

Worst Removal. Similarly to the previous operator, Worst Removal randomly selects a
route r. In this case, however, the vertex ri to be removed at each iteration is chosen as the
worst vertex in the route, i.e., as the vertex whose removal would lead to the largest decrease
in the route value. The decrease is computed in an approximated but quick way, as the
saving that could be obtained by: (1) reducing the distance traveled by connecting directly
ri−1 to ri+1; (3) removing user inconvenience penalties associated with requests landing at or
departing from ri. The removal process is repeated ⌈|routes(x)|d/100⌉ times.

All Removal. It aims at a larger diversification with respect to the two previous operators.
It selects a route r and then removes from r a certain number p of vertices, where p is a
random number generated, with uniform distribution, between 1 and |routes(x)|. The process
is repeated ⌈|routes(x)|d/100⌉ times.

Service time and Distance oriented Removal. A number of destroy operators in the
literature, starting from Shaw (1997), attempt to remove requests that are close to one an-
other, either in terms of distance, or time window, or both. The rationale behind that is to
facilitate, later on, the work of the repair method. To this end, we define the relatedness of
two requests, s and q, as δ(s, q), and compute it as the sum of the travel distances ds+,q+ and
ds−,q− , and of the time distances between the target pickup and delivery times of s and q.
We start by selecting a route r at random. Then, we select the request s that has the highest
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user inconvenience in r and remove it. Then, we compute the relatedness δ(s, q) of all other
requests q in r. We remove all requests q for which δ(s, q) ≤ δmin holds, with δmin being a
parameter defined with preliminary experiments. Once this is done, we iterate by selecting a
new route and iterate until ⌈nd/100⌉ requests have been removed.

B.5.3 Repair Operators

We built four operators, which all attempt to reinsert the removed requests by considering
all routes in a parallel fashion. In case a repair operator does not manage to reinsert all
removed requests, the solution is simply disregarded and the ALNS continues the search from
xcurr.

Best Insertion. It considers the requests in inverse order with respect to their removal. For
each request s, it considers all possible insertion positions, in all routes, and checks whether
the insertion would be feasible and how much it would increase the solution value. It then
reinserts s in the position leading to the lowest cost increase. The process is repeated until
all requests have been reinserted.

Two-Regret Insertion. It works as Best Insertion, but the requests are inserted in non-
increasing order of two-regret value. In detail, the operator evaluates for each request the
costs of the cheapest insertion position and of the second cheapest insertion position, and it
computes the two-regret as the difference between these two costs. It then selects the request
of maximum regret and inserts it in the cheapest position. It reiterates, recomputing all regret
values at each iteration, until all requests have been reinserted.

Forbidden Insertion. It works as Best Insertion, but disregards the possibility of reinsert-
ing a request in the same route which it was removed from.

Perturbation Insertion. It works as Best Insertion, but, any time it computes the cost of
inserting a request in a position, it multiplies the cost by a perturbation factor p randomly
selected in the interval [0.8, 1.2]. The idea, inspired by Ropke and Pisinger (2006), is to add
a further level of diversification to the repair process.

Parallel-Set Partitioning Operator. This is the most complex repair method. Starting
from the removed requests, the partially destroyed routes, and the airplanes that have not
been used, if any, it builds a complete solution by invoking the heuristic of Section B.5.1. It
invokes the heuristic β times, storing not only the best solution but also all routes from the
generated solutions. These routes are then passed to the SP model of Section B.4, which is
executed for a limited time. The best solution obtained is then returned.
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B.5.4 Adaptive Weight Adjustment

We follow an approach that mimics the classical one of Ropke and Pisinger (2006). At
each iteration, we randomly select first a destroy method and next a repair method according
to probabilities that depend on the previous results obtained during the ALNS search. Let M
be the set of available destroy methods, o ∈M the index of a destroy method, and t the index
of the ALNS iteration. At iteration t, each method o is associated with a non-negative weight
wdot. The weights are used to select a method, according to probabilities pdo = wdot/

∑
q∈M wdqt,

for o ∈ M . The same process is applied to select a repair method, for which we produce
instead wrot weights and pro probabilities.

At the first iteration, all weights are set to the same value, both for destroy and repair,
so that they have identical probabilities. Every time a new solution is accepted (as described
in Section B.5.6 below) the weights of the selected pair of destroy and repair methods are
updated. The rationale behind our weight updating is to reward methods that find new
improved solutions, with possibly a low computational effort. If a destroy method o has been
selected at iteration t and produced an accepted solution, its weight at the next iteration is
updated as

wdo,t+1 = wdot − timeo/timemax +∆t/∆max,

where timeo is the computing time spent by o, ∆t is the difference between the cost of
the previous and new solutions, computed according to (B.3), and timemax and ∆max are
normalization parameters. The same process is used to update the removal weights wrot.

B.5.5 Local Search

The local search approach that we implemented is shown in Algorithm 8. It attempts to
improve the input solution by means of four different neighborhoods, invoked one after the
other.

Algorithm 8 Local Search
1: procedure LS(xinput)
2: xLS ← Move(xinput)
3: xLS ← Swap(xLS)
4: if xLS = xinput then xLS ← Inter-move(xLS)
5: xLS ← Time-window manipulation(xLS)
6: return xLS
7: end procedure

Move. It is an intra-route search that attempts moving a vertex ri from its current position
to another position in route r. For each attempted move, the feasibility of all constraints is
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checked. In addition, the relocation of a vertex in another position might lead the route to
perform two consecutive visits to the same airstrip. In such a case, the two visits are merged
into a unique one. We consider a route r at a time, and a vertex in the route at a time,
starting from r2 and continuing until r|r|. We attempt each possible relocation, and the one
being feasible leading to the highest value, if any, is implemented. The procedure is performed
for all routes.

Swap. This procedure is also an intra-route local search. A swap is an intra-route interchange
of the positions of two vertices. The process is equivalent to Move, with the only exception
that, instead of moving a vertex ri after another vertex rj , it swaps ri with rj . The swap is
checked with respect to feasibility and cost, possibly considering the merging of two visits to
the same airstrip into a single visit.

Inter-move. This is the only inter-route search that we implemented. Because it is quite
expensive in terms of computing effort, we invoke it only in case the previous intra-route
searches failed in finding an improvement. We consider a route and attempt removing from
it a pair of consecutive vertices. This is done only if there are no requests that use just one
of the two vertices. In such a case, indeed, the removal would create infeasibilities for such
requests. We accept, instead, the case in which some requests are picked up in the first vertex
and dropped-off in the second. In this case, the requests are also removed from the route.
Once the pair of consecutive vertices, and the associated requests, have been removed, we
attempt inserting it in all possible positions in the other routes. The insertion being feasible
and leading to the highest value reduction, if any, is implemented. The process is iterated
until all routes have been scanned.

Time-window manipulation. It is in an intra-route search that evaluates, for each route
and for each visited vertex, if it is convenient to increase the time spent by the airplane on
the ground. It is just focused on user inconvenience minimization. The sequence of visits of
the route is untouched. We consider the first vertex in the route and try to increase the time
on ground from the original minimal ground time of the airstrip, by attempting all increases
of two minutes each, up to a total of a one-hour increase. The time giving the minimal
overall user inconvenience is selected, and the process is iterated from the next vertex until
all vertices have been scanned.

B.5.6 Acceptance and Stopping Criteria

We use a simulated annealing acceptance criterion and a geometrical cooling schedule
(Delahaye et al., 2019). Given a current solution x, a new solution x′ is accepted with prob-
ability P = e−(z(x′)−z(x))/Tt , where Tt > 0 is the temperature at iteration t. The temperature
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starts at T1 = Tstart and is decreased every θ iterations using the expression Tt+1 = αTt,
where 0 < α < 1 is the cooling rate. Good values for parameters Tstart, θ and α have been
decided on the basis of preliminary computational tests. These tests considered the setting
for both the first iterphase1 calls to the ALNS method, where we aim at a large diversification,
and for the successive calls, where we aim at intensifying the search in promising areas. The
value of Tstart is not fixed as a general input parameter, but we calculate it for each instance,
considering the solution of our constructive heuristic. Further details are provided in Section
B.6.

The ALNS is stopped as soon as one of the following conditions is met: Imax iterations
without accepting a new solution have elapsed; a minimum threshold temperature tmin has
been reached; or Θmax iterations in total, independently from acceptance, have elapsed.

B.6 Computation Results

In this section, we report the outcome of extensive computational tests that we performed
to evaluate the iterated ALNS heuristic. The parameters required by the algorithm were set on
the basis of preliminary tests, as follows: in Algorithm 6, itermax=10 and iterphase1=itermax/2;
for the destroy operators, [dmin, dmax]=[0.2, 0.6] and δmin=2000; for the Parallel-Set Parti-
tioning repair operator, β is one third of the number of passengers removed from the destroy
method (rounded up to the next integer if fractional); for the adaptive weight adjustment,
timemax=20 seconds and ∆max=10000. In terms of acceptance and stopping criteria, during
phase 1 we set Tstart=25000, θ=55, α=0.87, Imax=30, tmin=150, and Θmax=20000, whereas
in the second phase we set Tstart=2500, θ=30, α=0.95, Imax=80, tmin=50, and Θmax=20.

The algorithm was implemented in C++, and CPLEX 12.9 was used as MILP solver.
Computations were made on the computer cluster Beluga from CIRRELT, which uses Intel
Gold 6148 Skylake processors running at 2.40 GHz. The tests were performed on a set of
real-world instances obtained from the industrial partner. Details on the instances are given
in Section B.6.1, while in Section B.6.2 we contrast our results with those of the company
and present a detailed computational analysis.

B.6.1 Instances

The instance set was created by considering 24 days of activities of the company, as
outlined in Table B.1. The days are distributed in different times of the year and are con-
sequently characterized by different tourist requests. We divided the instances into three
groups: “small” instances have fewer than 150 requests; “medium” instances between 150
and 280 requests; and “large” instances more than 280 requests. Apart from the number of
requests, we also provide the number of airstrips, airplane types, and airplanes available. It
can be noticed that the test set is quite varied, involving cases having between 91 and 343
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requests, between 14 and 21 airstrips, and between 7 and 15 airplanes.

Table B.1: Instance characteristics

demand ID n |V | |F ′| |F | demand ID n |V | |F ′| |F | demand ID n |V | |F ′| |F |

small 1 91 16 1 11 medium 9 220 19 1 12 large 17 288 18 2 14
small 2 96 16 1 7 medium 10 222 18 2 12 large 18 289 18 2 11
small 3 101 14 1 9 medium 11 226 13 2 11 large 19 292 20 2 14
small 4 110 21 1 10 medium 12 252 16 2 13 large 20 300 16 2 14
small 5 112 19 1 10 medium 13 269 16 2 12 large 21 316 18 2 15
small 6 123 20 1 11 medium 14 271 18 2 12 large 22 320 18 2 15
small 7 125 19 1 10 medium 15 274 19 2 12 large 23 332 21 2 15
small 8 138 21 2 10 medium 16 285 17 1 13 large 24 343 14 2 14

As outlined in Section B.2.4, for each instance we tested two cost scenarios. The first one
corresponds to a short-term view of the problem, in which the daily cost for using an airplane
simply amounts to its mandatory daily fee. The second one corresponds instead to a long
term view, in which the airplane cost also includes the daily operating cost of staff salary and
amortization.

B.6.2 Results on the short-term scenario and comparison with the com-
pany

In Table B.2, we present the results we obtained on the short-term scenario, and compare
them with the solution implemented by the company. For each instance and each solution, we
provide in order: the number of airplanes used (denoted by |F̃ | in the table); the fuel consumed
in liters (fuel); the total distance traveled in kilometers (km); the number of intermediate
stops performed (IS); the total time window violation in minutes (TWV); and the objective
function values, namey cost (c, computed as in (B.1)), penalty (u, computed as in (B.2)),
and overall objective (z, computed as in (B.3) as the sum of c and u). For the iterated
ALNS, we also provide the percentage gap from the company solution, computed as (zALNS−
zcompany)/zcompany × 100, and the overall execution time, in the format h:mm:ss.

From the table, it can be noticed that the iterated ALNS finds solutions that consistently
outperform those produced by the company, with percentage gaps ranging from -13.7% to
-57.7%, and being -33.4% on average. The solutions by the company are produced manually:
the geographical area is divided into two sub-areas, North and South of Tanzania; two em-
ployees construct the partial solutions for each area, with the use of Excel files; finally, the
two solutions are merged together with some possible adjustments. The process of creating
the solution (which we recall is executed the day before) can also be affected by some partial
or late information on requests and airplane status, which might cause further adjustments.
In this context, the use of the iterated ALNS is well motivated, also due to the fact that the
processing times are not excessive, ranging from about seven minutes to about three and a
half hours, and being on average around one hour and a quarter.
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Table B.2: Comparison with company solutions on the short-term scenario

company iterated ALNS

ID |F̃ | fuel km IS TWV c (1) u (2) z (3) |F̃ | fuel km IS TWV c (1) u (2) z (3) gap% timetot
1 11 5852 10888 57 4088 17806.5 5058 22864.5 10 4197 7464 49 1847 12539.5 2337 14876.7 -34.9 0:07:36
2 7 3069 5416 71 2859 9218.7 3889 13107.7 7 2934 5189 80 1744 8772.2 2544 11315.8 -13.7 0:09:32
3 9 3855 7053 63 3112 11750.5 3842 15592.5 9 2909 5136 58 847 8825.9 1427 10253.2 -34.2 0:14:05
4 10 4701 8873 58 1888 14461.4 2748 17209.4 10 4001 7094 32 1067 11968.0 1387 13355.3 -22.4 0:14:33
5 10 4926 9138 76 3120 15085.1 4040 19125.1 10 3495 6156 92 1474 10549.1 2394 12943.0 -32.3 0:14:54
6 11 5449 10154 52 2812 16649.3 3492 20141.3 9 1363 2430 148 2860 4813 4340 9153.3 -54.6 0:27:29
7 10 5626 10262 95 4219 16979.3 5349 22328.3 9 4189 7416 107 4880 12473.8 5950 18423.7 -17.5 0:19:37
8 10 5796 10596 43 5636 17480.3 6206 23686.3 10 3882 6838 69 1958 11658.9 2648 14306.9 -39.6 0:20:36
9 12 5907 10689 114 6195 17842.7 7575 25417.7 12 5593 9879 91 2614 16625.1 3524 20148.9 -20.7 0:54:02

10 12 6782 12515 118 3975 20517.4 5355 25872.4 12 5897 10469 98 2644 17457.9 3624 21081.7 -18.5 1:08:06
11 11 6442 11928 154 8835 19507.8 10575 30082.8 10 5043 8934 91 3309 14906.7 4219 19125.6 -36.4 0:49:34
12 13 7548 13978 112 10673 22919.7 12013 34932.7 13 5495 9707 103 3325 16359.9 4355 20714.8 -40.7 0:57:16
13 12 7250 13240 74 8488 21794.8 9348 31142.8 12 4944 8738 125 3160 14858.8 4409 19268.3 -38.1 1:33:17
14 12 8414 15199 188 10068 25015.8 12128 37143.8 12 5664 10037 139 6276 16790.2 7666 24455.7 -34.2 1:26:22
15 12 7807 14081 190 7311 23230.9 10151 33381.9 12 3480 6180 303 7795 10984.9 10825 21810.3 -34.7 1:56:16
16 13 7128 12852 130 9720 21351.4 11020 32371.4 13 6483 11447 97 2826 19192.3 3796 22987.9 -29.0 1:41:01
17 14 10650 19333 211 8851 31740.4 11101 42841.4 14 7325 12971 173 4893 21756.2 6623 28379.0 -33.8 1:41:28
18 11 7555 13851 171 13254 22804.8 15044 37848.8 11 5849 10322 173 4253 17329.6 5983 23312.2 -38.4 2:06:11
19 14 8168 14442 152 9536 24116.5 11336 35452.5 14 5911 10422 120 3247 17597.4 4447 22044.7 -37.8 1:09:34
20 14 8497 15578 162 16687 25576.1 19007 44583.1 14 6319 11214 126 3235 18863.4 4495 23358.0 -47.6 2:06:46
21 15 8973 16278 184 14951 26898.6 17871 44769.6 15 2873 5112 381 5499 9648.8 9309 18957.7 -57.7 3:27:20
22 15 8914 16443 135 11592 27014.3 13462 40476.3 15 7302 12956 149 5133 21742.7 6623 28365.9 -29.9 2:02:45
23 15 8704 15343 158 16612 25682.9 18692 44374.9 15 7696 13593 206 4179 22917.7 6239 29156.2 -34.3 2:39:58
24 14 8569 15661 196 9355 25763.3 11475 37238.3 14 7609 13474 172 5003 22507.1 6723 29229.7 -21.5 2:54:58

AVG 12.0 6941 12658 124 8077 20883.7 9616 30499.4 11.8 5019 8882 133 3503 15047.5 4829 19876.0 -33.4 1:16:48

Strong improvements can be noticed both in the fuel consumption and in the distance
travelled, as well as on the two penalizations caused by intermediate stops and time window
violations. In terms of airplanes used, the iterated ALNS can reduce this number only for a
couple of instances, proving that the fleet is usually well dimensioned for the requests under
this service level.

We also attempted to evaluate a long-term scenario, where the daily cost of the airplanes
has been increased as previously discussed. The aim is to understand if it is acceptable to
reduce the fleet size and how this would affect the service level and the other daily operational
costs. The results that we obtained are given in Table B.3. The meaning of the columns is
the same as in Table B.2. We report again the details of the short-period test to facilitate
comparison. We omit the columns with cost c and overall objective function z, as these
are affected by the difference in the input costs and cannot be compared between the two
scenarios.

We can notice that the number of used airplanes is reduced for all instances when con-
sidering the long-term scenario. On average, this number decreases from 11.8 to 9, with a
consequent variation of about 24%. This can be imputed to the higher daily usage cost. The
side effect is that the routes performed by the airplanes are longer. This can be noticed by
considering that the number of airplanes is reduced but at the same time both fuel consumed
and traveled distance increase. Another side effect is the increase in the user inconvenience
function u. This can be mostly attributed to the increase in the time window violation, that
is almost doubled, whereas the number of intermediate stops is not considerably affected.
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Table B.3: Comparison of iterated ALNS results between short- and long-term scenarios

Short-term Long-term

ID |F̃ | fuel km IS TWV u (2) timetot |F̃ | fuel km IS TWV u (2) timetot
1 10 4197 7464 49 1847 2337 0:07:36 6 3881 6906 68 3920 4600 0:05:38
2 7 2934 5189 80 1744 2544 0:09:32 6 3232 5723 77 2087 2857 0:48:31
3 9 2909 5136 58 847 1427 0:14:05 6 2909 5129 83 2082 2912 0:07:47
4 10 4001 7094 32 1067 1387 0:14:33 6 3791 6715 84 4398 5238 0:10:53
5 10 3495 6156 92 1474 2394 0:14:54 6 3405 5997 89 4843 5733 0:09:58
6 9 1363 2430 148 2860 4340 0:27:29 6 1700 3018 152 3974 5494 0:23:39
7 9 4189 7416 107 4880 5950 0:19:37 6 4259 7539 115 4580 5730 0:13:22
8 10 3882 6838 69 1958 2648 0:20:36 7 4293 7556 68 5378 6058 0:13:52
9 12 5593 9879 91 2614 3524 0:54:02 9 5400 9535 159 6717 8307 0:37:09

10 12 5897 10469 98 2644 3624 1:08:06 10 5969 10595 89 5053 5943 0:43:07
11 10 5043 8934 91 3309 4219 0:49:34 8 5070 8981 79 7294 8084 0:38:55
12 13 5495 9707 103 3325 4355 0:57:16 11 5556 9814 116 6296 7456 0:58:02
13 12 4944 8738 125 3160 4409 1:33:17 10 5037 8899 87 4886 5756 0:55:15
14 12 5664 10037 139 6276 7666 1:26:22 10 5700 10102 112 7720 8840 0:53:35
15 12 3480 6180 303 7795 10825 1:56:16 9 4318 7669 263 9709 12339 1:26:07
16 13 6483 11447 97 2825 3796 1:41:01 10 6526 11521 145 7416 8866 0:51:35
17 14 7325 12971 173 4893 6623 1:41:28 12 7586 13456 133 9864 11194 0:52:23
18 11 5849 10322 173 4253 5983 2:06:11 10 5800 10255 141 8073 9483 1:03:48
19 14 5911 10422 120 3247 4447 1:09:34 10 6002 10584 103 9343 10373 1:08:44
20 14 6319 11214 126 3235 4495 2:06:46 11 6319 11210 133 8466 9796 1:18:47
21 15 2873 5111 381 5499 9308 3:27:20 8 2633 4686 353 13376 16906 2:49:10
22 15 7302 12956 149 5133 6623 2:02:45 13 7763 13750 128 9245 10525 1:18:35
23 15 7696 13593 206 4179 6239 2:39:58 13 7514 13273 176 8716 10476 1:27:00
24 14 7609 13474 172 5003 6723 2:54:58 12 7810 13829 153 7665 9195 2:01:13

AVG 11.8 5019 8882 133 3503 4828 1:16:48 9.0 5103 9031 129 6713 8007 0:53:25

With the aim of determining the best balance between the time spent in the heuristic
search and in the MILP model solution by the solver, we performed an additional computa-
tional analysis in which we attempted different values of the number of calls to Algorithm 7
inside the iterated ALNS. This has been obtained by changing the value of itermax (see step
5 of Algorithm 6), which also represents the number of calls to the set partitioning model
(step 19 of Algorithm 7). The results that we obtained are summarized in Table B.4, where
each line provides average values over the entire set of 24 instances. The columns have the
same meaning as those in the previous tables, with the exception of a new column, called
timeincumbent, which has been included to present the average time in which the incumbent
solution was obtained. We can notice that the attempt with itermax=10 (i.e., the value we
adopted for all our previous experiments) gives slightly better results than the other attempts,
providing lower cost and user inconvenience values. The improvements are quite small with
respect to the values obtained with six and 12 iterations, but much better with respect to
those obtained with just one or two attempts. This proves that a good number of calls to
the set partitioning model is beneficial for the overall algorithm, and that, when this value is
sufficiently large, the algorithm becomes robust.
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Table B.4: Analysis for different calls to the set partitioning model (24 instances per line)

itermax |F̃ | c (1) u (2) z (3) timeincumbent timetot
1 9.0 32363.4 9655 42018.5 00:43:25 00:53:19
2 8.8 31255.5 9596 40851.9 00:41:08 00:54:09
6 9.1 31441.8 8391 39833.0 00:48:51 00:53:46

10 9.0 31018.0 8007 39025.0 00:47:10 00:53:25
12 9.0 31064.5 8008 39072.7 00:52:23 00:55:12

B.7 Conclusions

In this paper, we studied the Dial-A-Flight operations of one of the major Safari airline
companies in Tanzania. The problem they face, denoted DAFPAS, is very challenging because
it combines a heterogeneous aircraft fleet, multiple depots, flexible time windows, different
operational costs, and the need to provide a good service level. The service level is measured
by the number of intermediate stops that passengers undertake during transportation, and
the possible violation of the flexible time window constraints. Another complicating issue in
the problem originates from the fact that refueling is possible only at a limited number of
airstrips.

We solved the DAFPAS heuristically with an iterated ALNS algorithm. Consistently with
the literature, the ALNS proved to be effective in dealing with large size instances, finding
solutions that were consistently better than those produced manually at the company. Local
search and a set partitioning model helped improve the performance of the heuristic. In
particular, it was shown that it is better to invoke the set partitioning model many times,
with a shorter time limit, instead of just once with a longer limit.

An interesting future research direction is to consider the planning of the itineraries for
multiple consecutive days, so as to find the best airstrips where to stop during the night and
start at the next morning. That would require modifying the heuristic algorithm, both for
what concerns ALNS, local search and set partitioning components, by considering the fact
that routes selected for a given day should be connected with the routes in the next day. Such
an approach could be employed within a rolling horizon framework.

Another interesting research avenue concerns the opportunity to issue low-cost last minute
fares, so as to fill remaining seats at the planned trips, or obtain a better use for trips that
are only meant at relocating the aircraft to meet successive requests. Alternative means of
transport could also be taken into account. Indeed, for itineraries of limited distance, the
tourists can also be offered to move on road, as in traditional ground safaris.
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