A comprehensive study on the stability of a planar linearized single-track model of a two-section pusher articulated bus is presented with the aid of a complete set of stability maps. The two sections of the vehicle model are connected at the hitch point by a revolute joint; an equivalent visco-elastic characteristic function describes its rotational visco-elastic properties, playing a major role in stability control and therefore in passive safety. The equations of motion are derived in analytical form, allowing easy implementation of the non-linear model (eventually including a non-linear viscoelastic characteristic functions of the joint). Stability of the linearized model is then studied in equilibrium configurations by means of sensitivity analysis with respect to the model’s governing parameters. Stability maps are drawn on the basis of sets of parameter values related to straight-ahead running, steady-state manoeuvres. The most important parameters controlling the onset of unstable motions are identified, paying attention to the role played by the equivalent rotational damping coefficient and the equivalent torsional stiffness characterizing the connection joint, with the aim of finding criteria for its design.
Stability analysis of articulated bus in straight-ahead running manoeuvre / DE FELICE, Alessandro; Mercantini, Matteo; Sorrentino, Silvio. - In: JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS. - ISSN 2383-4536. - 7:3(2021), pp. 1649-1662. [10.22055/jacm.2021.36566.2869]
Stability analysis of articulated bus in straight-ahead running manoeuvre
Alessandro De Felice;Silvio Sorrentino
2021
Abstract
A comprehensive study on the stability of a planar linearized single-track model of a two-section pusher articulated bus is presented with the aid of a complete set of stability maps. The two sections of the vehicle model are connected at the hitch point by a revolute joint; an equivalent visco-elastic characteristic function describes its rotational visco-elastic properties, playing a major role in stability control and therefore in passive safety. The equations of motion are derived in analytical form, allowing easy implementation of the non-linear model (eventually including a non-linear viscoelastic characteristic functions of the joint). Stability of the linearized model is then studied in equilibrium configurations by means of sensitivity analysis with respect to the model’s governing parameters. Stability maps are drawn on the basis of sets of parameter values related to straight-ahead running, steady-state manoeuvres. The most important parameters controlling the onset of unstable motions are identified, paying attention to the role played by the equivalent rotational damping coefficient and the equivalent torsional stiffness characterizing the connection joint, with the aim of finding criteria for its design.File | Dimensione | Formato | |
---|---|---|---|
JACM-2021.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.73 MB
Formato
Adobe PDF
|
1.73 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris