Laser Powder-based Directed Energy Deposition (LP-DED) process is a cutting-edge Additive Manufacturing (AM) technology for metal part repair and production. The disruptive potentialities of LP-DED are nowadays limited by the difficulty in the identification of the optimized set of process parameters, typically obtained from long and expensive experimental trials. In this work, a thermal simulation tool able to predict material deposition behaviour is developed using a finite element code. An original method is defined to model the material addition and energy flow. The forecasting capabilities of the model in terms of penetration depth and track dimensions are evaluated by comparing the numerical outcomes with experimental data.

Mesoscale modelling of laser powder-based directed energy deposition process / Piscopo, G.; Atzeni, E.; Salmi, A.; Iuliano, L.; Gatto, A.; Marchiandi, G.; Balestrucci, A.. - 88:(2020), pp. 393-398. ( 13th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME 2019 Naples, ITALY JUL 17-19, 2019) [10.1016/j.procir.2020.05.068].

Mesoscale modelling of laser powder-based directed energy deposition process

Iuliano L.;Gatto A.;
2020

Abstract

Laser Powder-based Directed Energy Deposition (LP-DED) process is a cutting-edge Additive Manufacturing (AM) technology for metal part repair and production. The disruptive potentialities of LP-DED are nowadays limited by the difficulty in the identification of the optimized set of process parameters, typically obtained from long and expensive experimental trials. In this work, a thermal simulation tool able to predict material deposition behaviour is developed using a finite element code. An original method is defined to model the material addition and energy flow. The forecasting capabilities of the model in terms of penetration depth and track dimensions are evaluated by comparing the numerical outcomes with experimental data.
2020
13th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME 2019
Naples, ITALY
JUL 17-19, 2019
88
393
398
Piscopo, G.; Atzeni, E.; Salmi, A.; Iuliano, L.; Gatto, A.; Marchiandi, G.; Balestrucci, A.
Mesoscale modelling of laser powder-based directed energy deposition process / Piscopo, G.; Atzeni, E.; Salmi, A.; Iuliano, L.; Gatto, A.; Marchiandi, G.; Balestrucci, A.. - 88:(2020), pp. 393-398. ( 13th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME 2019 Naples, ITALY JUL 17-19, 2019) [10.1016/j.procir.2020.05.068].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2212827120303875-main.pdf

Open access

Tipologia: VOR - Versione pubblicata dall'editore
Licenza: [IR] creative-commons
Dimensione 2.16 MB
Formato Adobe PDF
2.16 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1238191
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact