In this paper, we present novel strategies for optimizing the performance of many binary image processing algorithms. These strategies are collected in an open-source framework, GRAPHGEN, that is able to automatically generate optimized C++ source code implementing the desired optimizations. Simply starting from a set of rules, the algorithms introduced with the GRAPHGEN framework can generate decision trees with minimum average path-length, possibly considering image pattern frequencies, apply state prediction and code compression by the use of Directed Rooted Acyclic Graphs (DRAGs). Moreover, the proposed algorithmic solutions allow to combine different optimization techniques and significantly improve performance. Our proposal is showcased on three classical and widely employed algorithms (namely Connected Components Labeling, Thinning, and Contour Tracing). When compared to existing approaches —in 2D and 3D—, implementations using the generated optimal DRAGs perform significantly better than previous state-of-the-art algorithms, both on CPU and GPU.
One DAG to Rule Them All / Bolelli, Federico; Allegretti, Stefano; Grana, Costantino. - In: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. - ISSN 0162-8828. - 44:7(2022), pp. 3647-3658. [10.1109/TPAMI.2021.3055337]
One DAG to Rule Them All
Bolelli Federico;Allegretti Stefano;Grana Costantino
2022
Abstract
In this paper, we present novel strategies for optimizing the performance of many binary image processing algorithms. These strategies are collected in an open-source framework, GRAPHGEN, that is able to automatically generate optimized C++ source code implementing the desired optimizations. Simply starting from a set of rules, the algorithms introduced with the GRAPHGEN framework can generate decision trees with minimum average path-length, possibly considering image pattern frequencies, apply state prediction and code compression by the use of Directed Rooted Acyclic Graphs (DRAGs). Moreover, the proposed algorithmic solutions allow to combine different optimization techniques and significantly improve performance. Our proposal is showcased on three classical and widely employed algorithms (namely Connected Components Labeling, Thinning, and Contour Tracing). When compared to existing approaches —in 2D and 3D—, implementations using the generated optimal DRAGs perform significantly better than previous state-of-the-art algorithms, both on CPU and GPU.File | Dimensione | Formato | |
---|---|---|---|
One_DAG_to_Rule_Them_All.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.56 MB
Formato
Adobe PDF
|
1.56 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris