
One DAG to Rule Them All
Federico Bolelli ,Member, IEEE, Stefano Allegretti , and Costantino Grana ,Member, IEEE

Abstract—In this paper, we present novel strategies for optimizing the performance of many binary image processing algorithms.

These strategies are collected in an open-source framework, GRAPHGEN, that is able to automatically generate optimized C++ source

code implementing the desired optimizations. Simply starting from a set of rules, the algorithms introduced with the GRAPHGEN

framework can generate decision trees with minimum average path-length, possibly considering image pattern frequencies, apply state

prediction and code compression by the use of directed rooted acyclic graphs (DRAGs). Moreover, the proposed algorithmic solutions

allow to combine different optimization techniques and significantly improve performance. Our proposal is showcased on three

classical and widely employed algorithms (namely Connected Components Labeling, Thinning, and Contour Tracing). When compared

to existing approaches —in 2D and 3D—, implementations using the generated optimal DRAGs perform significantly better than

previous state-of-the-art algorithms, both on CPU and GPU.

Index Terms—GRAPHGEN, directed rooted acyclic graphs, optimal decision trees, decision tables, connected components labeling, thinning,

chain-code

Ç

1 INTRODUCTION

DEEP Learning, and (Convolutional) Neural Networks
(CNN) in general, whose growth in popularity began

in the early 2010s, have marked a shift of Computer Vision,
permeating most of the academic research fields of the last
decade. Thanks to their ability of learning a hierarchical
representation of raw input data without relying on hand-
crafted features, CNNs have rapidly become a methodology
of choice for analyzing medical images [1], [2], [3], [4], [5],
perceiving and elaborating an interpretation of dynamic
scenes [6], [7], [8], [9], [10], handwriting analysis and speech
recognition [11], [12], surveillance, traffic monitoring and
autonomous driving [13], [14], [15], [16], people tracking
[17], [18], skeletonization [19], image synthesis [20] and so
on. This became possible thanks to the increase of process-
ing capabilities, aided by the fast development of Graphics
Processing Units (GPUs), and thanks to the collection of
massive amounts of datasets [16], [17], [21], [22], required
during the training of the models.

Nowadays, numerous start-ups and new industrial appli-
cations come to life thanks to deep learning. Therefore,
important questions come to mind: “Is computer vision and
binary image processing without machine learning still
worth it?”, “How significant is the improvement of these
kind of algorithms, both in terms of performance and accu-
racy, in the deep learning era?”. As a matter of fact, most of the
state-of-the-art solutions on the aforementioned research
fields exploit binary image processing algorithms as funda-
mental pre- or post-processing steps to get to the final

results [5], [13], [15], [17], [23] or to prepare training data
[20]. When segmenting images, a highly relevant task in
medical imaging [2], Connected Components Labeling (CCL) is
usually exploited together with voting strategies [24] to
remove noise and produce the final segmentation map [5] or
to count objects [13]. Thinning, instead, is often used together
with contour-tracing, morphological operators, and CCL,
whenever a compact representation of the objects inside an
image is required [20], as in fingerprint analysis [25], vascu-
lature geometry detection [26], [27], and roadmapping [15].

Therefore, also deep learning pipelines can benefit from
efficient implementations of binary image processing algo-
rithms. Moreover, given that image processing algorithms
represent the base step of many real-time applications [28],
[29], they are required to be as fast as possible. Thus,
research in the field moved towards optimizing the perfor-
mance of these algorithms, i.e., the execution speed.

In this paper, we introduce a novel suite of algorithms that
allows to automatically apply the most appropriate optimi-
zation strategies to any problem modelled with Decision
Tables (DTs), with further techniques applicable specifically
to binary image processing problems. These algorithms are
released with this paper as an open-source framework,
called GRAPHGEN (the all encompassing GRAPH GENerator),
which takes a definition of the problem, in terms of condi-
tions that need to be checked and actions to be performed,
and produces state-of-the-art solutions, directly providing
the optimizedC++ source code.

To showcase the capabilities of our proposal, we selected
the three aforementioned fundamental image processing
algorithms: connected components labeling, image skeleto-
nization (thinning) and contours extraction, also known as
chain-code extraction. We thus demonstrate the ability of the
framework to automatically generate the previous state-of-
the-art algorithms, starting only from the formal problem
definition, and then further enhance their performance,
thus setting the new reference. To prove the generality of
the proposed techniques, the presented benchmarks are not

� The authors are with the Dipartimento di Ingegneria “Enzo Ferrari,”
Universit�a degli Studi di Modena e Reggio Emilia, 41121 Modena, Italy.
E-mail: {federico.bolelli, stefano.allegretti, costantino.grana}@unimore.it.

Manuscript received 16 July 2020; revised 17 Dec. 2020; accepted 17 Jan. 2021.
Date of publication 28 Jan. 2021; date of current version 3 June 2022.
(Corresponding author: Federico Bolelli.)
Recommended for acceptance by L. Zhang.
Digital Object Identifier no. 10.1109/TPAMI.2021.3055337

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 7, JULY 2022 3647

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5299-6351
https://orcid.org/0000-0002-5299-6351
https://orcid.org/0000-0002-5299-6351
https://orcid.org/0000-0002-5299-6351
https://orcid.org/0000-0002-5299-6351
https://orcid.org/0000-0002-3461-7565
https://orcid.org/0000-0002-3461-7565
https://orcid.org/0000-0002-3461-7565
https://orcid.org/0000-0002-3461-7565
https://orcid.org/0000-0002-3461-7565
https://orcid.org/0000-0002-4792-2358
https://orcid.org/0000-0002-4792-2358
https://orcid.org/0000-0002-4792-2358
https://orcid.org/0000-0002-4792-2358
https://orcid.org/0000-0002-4792-2358
mailto:federico.bolelli@unimore.it
mailto:stefano.allegretti@unimore.it
mailto:costantino.grana@unimore.it


limited to 2D, but also include 3D image processing algo-
rithms and GPU applications. Moreover, the possibility of
applying GRAPHGEN to additional binary image processing
algorithms, such as morphological operators, is described in
Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2021.3055337.

Our contributions can be summarized as follows:

1) A novel suite of algorithms that allows to generate
extremely optimized code for any problem that can
be formalized with decision tables.

2) GRAPHGEN, a generalized open-source framework that
integrates all the proposed algorithmic solutions,
and allows to automatically generate optimized code
for the selected task.

3) An improvement to the compression strategy of trees
and forests described in [30].

4) New GRAPHGEN-generated binary image processing
algorithms, which significantly improve state-of-the-
art on 2D and 3D CCL, Thinning and Chain-Code,
both in CPU and GPU environments.

5) An extensive set of experiments highlighting stre-
ngths and weaknesses of the GRAPHGEN-generated
algorithms on different scenarios.

The rest of the paper is organized as follows: in Section 2
the framework is presented, with an explanation of the ratio-
nale behind the optimization strategies involved. Three dif-
ferent applications of GRAPHGEN are presented in Section 3,
together with a review of the advances of the last decades on
the fields. Finally, in Section 4 conclusions are drawn. The
source code of the GRAPHGEN framework is available in [31].

2 ONE DAG TO RULE THEM ALL: GRAPHGEN

In the analysis of binary images, most algorithms share the
same general structure: for each (group of) pixel x, some
action must be performed, which depends on the value of x
and its neighborhood. The term action is a general concept to
describe specific algorithm operations: for Connected Com-
ponents Labeling, it could be the recording of the equiva-
lence between two label classes and the assignment of a
provisional label to x; for thinning, it could be the removal of
x, and so on. The set of pixels whose value can condition the
action constitutes the mask (Fig. 1). Different algorithms will
obviously perform diverse actions based on the neighbor-
hood, but even when the task is the same, algorithmic solu-
tionsmay differ in the neighborhood exploration.

Given the simplicity of the operations to be performed,
one of the main elements to keep in mind is the number and

the order of data load/store operations, which affect perfor-
mance the most. Therefore, cache and branch prediction are
critical elements that have to be considered in assessing the
computational requirements of these algorithms.

Many implementations available in literature have
already observed this, providing solutions to perform cache
friendly accesses, limiting the number of conditional jumps
or reusing the information of already read pixels when the
mask moves through the image. Most of them implement
ad hoc solutions, specifically designed for a given task,
without providing general strategies. GRAPHGEN introduces a
unified approach, able to automatically apply and combine
the most effective solutions to access, at each step of an algo-
rithm, only the pixels which are strictly required, while
reducing the corresponding machine code.

2.1 Modeling Algorithms With Decision Tables

The class of algorithms GRAPHGEN deals with can be
described with a command execution metaphor [32]. Values of
pixels in the mask constitute a rule (binary string), which is
associated to an action or, in general, a set of equivalent
actions.

Considering a mask with L pixels, the set of possible rules
is a L-dimensional boolean space denoted by R, where each
element r has a probability pr to occur, with

P
r2R pr ¼ 1.

Given a set of actions A, the linking between rules and
actions is represented by a function DT : R ! PðAÞnf;g,
that can be describedwith anOR-decision table.

Given the decision table, an algorithm can simply check
the value of every pixel in the mask, identify the rule, and
find the action to perform in the corresponding column
(Fig. 2). The OR-decision table can be easily translated into a
Look-Up Table (LUT) where each rule is an index mapping
to a vector of equivalent actions.

If the same action is associated to multiple rules, it may
not be necessary to know all bits of the rule to identify the
correct action. As an example, if we consider a mask with 3
pixels, p; x; q, and both rules 110 and 111 lead to action a,
when p ¼ 1 and x ¼ 1 the action to be performed is already
known, and there is no need to check q. Consequently, some
processing time can be saved by removing unnecessary
pixel checks, and exploiting a strategy that stops accessing
pixels of the mask after it has gathered enough information
to identify the correct action. A directed binary rooted tree,
where each node is a condition (pixel), and each leaf con-
tains an action, is an example of such a strategy. We call it
Decision Tree, or DTree. The problem of building decision
trees from a binary decision table has been addressed by

Fig. 1. Example of scan masks. Gray squares identify current pixels to be
labeled using information extracted from white pixels. (a) is the classical
mask adopted when exploring a 3�3 neighborhood in 8-connectivity, (b)
and (c) are improved versions commonly employed in CCL.

Fig. 2.OR-decision table for the Rosenfeld mask adopted in CCL.

3648 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 7, JULY 2022

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3055337
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3055337


Schumacher and Sevcik in [33] with a dynamic program-
ming approach, and extended in [34] to OR-decision tables.

The conversion of a decision table (with L conditions) to
a DTree can be interpreted as the partitioning of an
L-dimensional hypercube (L-cube in short), where vertexes
correspond to the 2L rules in R. We define a set K � R as a
k-cube if it is a cube in f0; 1gL of dimension k. The k-cube
can be represented as a L-vector containing k dashes (-) and
L� k values 0 and 1, where dashes represent the concept of
indifference. The positions of dashes identify a set called
DK , while PK ¼

P
r2K pr is the occurrence probability of the

cube. Given a decision table DT , set AK contains the com-
mon actions to all rules inK: AK ¼ \r2KDT ðrÞ.

Definition 1 (Decision Tree). Given a DT and a k-cube K, a
Decision Tree forK is a binary tree T where:

(1) Each leaf ‘ corresponds to a k-cube, denoted by K‘ �
K, and the set ofK‘ is a partition ofK;

(2) Each leaf ‘ has a non empty set of actions AK‘
, associ-

ated to cubeK‘ by DT ;
(3) Each internal node is labeled with an index i 2 DK and

is weighted by wi (which represents the cost of testing
the ith condition), with left and right outgoing edges
labeled respectively with 0 and 1;

(4) Root to leaf paths uniquely identify cubes associated to
leaves by means of nodes and edges labels.

A tree for a k-cube K can be recursively built in this way:
select an index j 2 DK and label the root of the tree with j,
divide cube K into two cubes Kj;0 and Kj;1, with dash in
position j respectively set to 0 and 1, and recursively build
the two subtrees from Kj;0 and Kj;1, stopping when a cube
has a non-empty associated set of actions (i.e., AK 6¼ ;). A
simple example of a 3-cube partitioning is reported in Fig. 3.

Multiple decision trees can be constructed from the same
k-cube, and each can be evaluated on the basis of the aver-
age amount of condition tests that it allows to save with
respect to the LUT, which represents the gain of the tree.

This gain is defined by the following formula:

gainðT Þ ¼
X
‘2L

PK‘

X
i2DK‘

wi

0
@

1
A: (1)

A tree with maximum gain for a k-cube is called Optimal
Decision Tree (ODTree), and can be built by means of a
recursive procedure. At step 0, all 0-cubes are associated to
a gain of 0. At step n, the algorithm builds all possible
n-cubes, each of them obtainable by merging two
ðn� 1Þ-cubes in n different ways, and keeps track of the
maximum gain obtainable for every n-cube S

GainS ¼ max
i2DS

ðGainSi;0 þGainSi;1 þ dwiPSÞ: (2)

Where d equals 0 if AS ¼ ; and 1 otherwise. The procedure
stops when n ¼ k, and the optimal decision tree is con-
structed by tracing back through the merges that produce
the maximum gain at each n-cube, until a cube S with AS 6¼
; is found, which is a leaf. Fig. 4 depicts the ODTree gener-
ated by means of the described approach starting from the
OR-decision table of Fig. 2. Grana et al. proved the correct-
ness of the algorithm in [34].

In order to provide an implementation, we need to assign
the occurrence probability pr for all rules. The simplest
approach consists of considering every rule to be equally
probable (i.e., pr ¼ 2�L; 8r 2 R). Another possibility is to
perform a statistical inference, deducing probabilities from
a data sample representative of the expected input for the
algorithm. A collection of datasets of real and synthetic
images, covering most binary image processing application
fields, is included in GRAPHGEN for this purpose.

The generation of an optimal decision tree is the first step
of any optimization process provided by the framework.
This requires a general and flexible mean to describe the
problem in a machine readable way. The modeling of a
binary image processing problem with a decision table can

Fig. 3. Example of 3-dimensional hypercube partitioning. In this case
splits are performed, in order, on index j ¼ 0, j ¼ 2, and j ¼ 1 of the
k-cubes. Underlined values represent the concept of indifference.

Fig. 4. Optimal DTree obtained using the algorithm presented in Sec-
tion 2.1 and starting from the OR-decision table of Fig. 2. Internal nodes
(ellipsis) represent the conditions to be checked, and leaves (rectangles)
contain the actions to be performed, which are identified by integer num-
bers. The root of the tree, also a condition, is represented by a octagon.

BOLELLI ETAL.: ONE DAG TO RULE THEM ALL 3649



be performed by feeding a regular function with all possible
combinations of inputs and producing the corresponding
actions, but other problems may require different and more
complex strategies. Therefore, GRAPHGEN accepts different
means to produce the list of rules: a YAML file can be used
to define a task in terms of conditions and actions (Listing 1).
Please refer to [31] for detailed examples of both use cases.

2.2 State Prediction in Binary Image Processing

The second optimization step of GRAPHGEN, prediction, con-
cerns the exploitation of the information gathered in the
previous scan step, which can also be useful for the current
one. Prediction can be used whenever some pixels are still
part of the mask after the shift. In fact, if such pixels were
checked in the previous step, there is no need to read them
again. As an example, if we consider the 3�3 mask in Fig. 5,
pixels from p1 to p6 may be used again after a unitary shift,
but their identity will change accordingly. For example, if p4
has been read, its value can be used instead of reading p1 in
the next step. This approach is commonly used with
average/box filtering and running median [35]. He et al.
[36] designed a CCL algorithm where the information pro-
vided by the values of already seen pixels is condensed in a
configuration state, and the transition is modeled with a
finite-state machine.

Grana et al. [37] proposed a paradigm to leverage already
seen pixels, which combines prediction with decision trees.
They noticed that the knowledge of pixels checked in the
previous step could result in a simplification of the DTree
for the current pixel. A reduced DTree can be computed for
each possible set of known pixels, and then the trees can be
connected to generate a single forest, which drives the exe-
cution of the algorithm.

In order to generalize the state prediction technique to
every mask and shift, GRAPHGEN defines a standardized
mask description structure and pixel naming, which allows
the automatic tree reduction and forest generation.

2.2.1 Prediction of Already Accessed Pixels

The information about already known pixels is represented
by a set of constraints, which are ordered pairs ðp; vÞ, where
p is a pixel inside the mask, and v is its known value. A
reduced tree is created from a more general one by applying
the set of constraints: every node that contains a condition

over a pixel included in the constraint set is substituted
with the child corresponding to the known value. For exam-
ple, if ðp; 1Þ is included in the constraint set, each node with
condition p is replaced with its child on branch 1. The infor-
mation gathered in each algorithm step is coded in the path
from the DTree root to the selected leaf. In fact, already read
pixels correspond to DTree nodes, and their values can be
inferred from the chosen branches. Therefore, a constraint
set is filled for each leaf of the general DTree, and is used to
create a reduced version of it, meant to replace the complete
tree in determining the action for the next pixel. Each
reduced DTree is identified by an index, that is recorded in
the leaf from which it was generated, in a field named next.
This process creates a forest of reduced DTrees, which
allows to apply state prediction to any algorithm. The com-
plete DTree is only used for the first pixel of the row. Then,
after a leaf has been reached and the proper action has been
performed, the execution flow jumps to the root of the next
reduced DTree associated to the leaf, and only reduced
DTrees are used until the end of the row. The forest gener-
ated applying prediction on the DTree of Fig. 4 is reported
in Fig. 6a.

2.2.2 Prediction of External Pixels

It can happen that, at some point during the execution, the
mask exceeds one or more borders of the image. In that situ-
ation, pixels outside the image are considered to have a
fixed value outv (usually 0). This observation leads to the
construction of special constraint sets that are to be
employed in specific areas of the image. For example, first
row constraints set pixels in the upper part of the mask,
which are outside the image when the first row is processed,
to outv. In the same way, last row, first col, last col constraint
sets can be created, and when working on three dimensions,
also first slice or last slice. The prediction of external pixels
allows to avoid checks on pixel existence: in fact, every
reduced DTree only considers pixels that are guaranteed to
not exceed the borders of the input image. Thus, boundary
checks can be removed.

2.3 From Trees to DRAGs

The ODTree generated in the first step of GRAPHGEN optimi-
zation procedure (Section 2.1) can contain identical or
equivalent subtrees. These subtrees can be merged together,
reducing the size of the compiled machine code.

The problem can be formalized as follows. The set of
decision trees for the set of conditions C and actions A is
called T ðC;AÞ. N is the set of nodes and L is the set of
leaves. The condition of a node is denoted with cðnÞ 2 C,
with n 2 N , and the set of equivalent actions of a leaf is
denoted with að‘Þ 2 PðAÞnf;g, with ‘ 2 L. Each node n has

Fig. 5. Unitary horizontal shift for the 3� 3mask during image scan. Pix-
els named with “X” were inside the mask in the previous iteration while
pixels named with “Y”are currently inside.

Listing 1. Example of YAML Configuration File Which Defines the SAUF
CCL Algorithm [38] in GRAPHGEN. pixel_set identifies pixel names, their
position inside the scanning mask and the mask shift size along x and y
axes. conditions and actions represent respectively the list of conditions
to check and actions to perform. For each rule, a set of equivalent
actions is provided (rules).

3650 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 7, JULY 2022



a left subtree lðnÞ and a right subtree ðnÞ, each rooted in the
corresponding child of n.

Definition 2 (Equal Decision Trees). Two decision trees
t1; t2 2 T , having corresponding roots r1 and r2, are equal if
either:

1) r1; r2 2 L and aðr1Þ ¼ aðr2Þ, or
2) r1; r2 2 N , cðr1Þ ¼ cðr2Þ and lðr1Þ is equal to lðr2Þ

and ðr1Þ is equal to ðr2Þ.

Definition 3 (Equivalent Decision Trees). Two decision
trees t1; t2 2 T , having corresponding roots r1 and r2, are
equivalent if either:

1) r1; r2 2 L and aðr1Þ \ aðr2Þ 6¼ ;, or
2) r1; r2 2 N , cðr1Þ ¼ cðr2Þ and lðr1Þ is equivalent to

lðr2Þ and ðr1Þ is equivalent to ðr2Þ.

A pair of equal or equivalent trees can be merged into
a single one, and both their parent nodes can point to it.
The result of this transformation does not satisfy the defi-
nition of tree anymore, but it falls into the more common
category of Directed Rooted Acyclic Graphs. As antici-
pated above, the conversion from tree to DRAG has the
benefit of reducing the machine code size. The purpose is
to make better use of the instruction cache, obtaining a
more efficient code compression than that achievable by a
compiler, which can merge identical pieces of code but
cannot exploit equivalence between subtrees. This com-
pression can be directly applied to an ODTree or to a
decision forest obtained through state prediction. In the
latter case, the merging procedure can involve subtrees of
different trees, as long as corresponding leaves share the
same next value.

The compression of a forest into a multi-rooted DRAG
(Fig. 6b) is performed in two steps. The first step concerns
the merging of equal subtrees. This is done by traversing
the forest in any order, and merging each subtree with
every equal one. The result of this operation is optimal
and is always the same, whatever traversing order is cho-
sen, because tree equality is a transitive relation [39].
Equivalent trees could be merged in a similar manner,

taking the intersection of actions in the corresponding
leaves. However, since tree equivalence is not transitive,
this procedure would depend on the traversal order. Our
aim is to find the optimum, which is the forest with the
least nodes.

With respect to previous proposals [30], [40], our
approach is a dynamic programming algorithm which guar-
antees to reach the optimal compression. In order to save
computation time, we use a memoization technique that
consists of a compact representation of trees in string form.
The compression procedure starts creating a list of all the
“stringized” subtrees in the forest that are equivalent to at
least another tree. The list is sorted in descending order, so
that larger trees come first. In recursive step n, the algorithm
merges every couple of equivalent trees one at a time, and
for each resulting forest continues the compression in step
nþ 1. The recursion ends when no couple of equivalent
trees remains.

This procedure ensures to find the compressed multi-
rooted DAG with the minimum number of nodes. More-
over, sorting subtrees in decreasing order allows for a faster,
greedy strategy, obtainable by stopping the procedure after
it has reached the end of the recursion once. This is based
on the heuristic assumption that it is better to merge larger
subtrees first, which holds true in our experience: in all the
examples that we tried, the best solution found by the algo-
rithm is the first one.

2.4 Generating Algorithm Source Code

Regardless of the task addressed, any algorithm generated
by GRAPHGEN scans the input image in a raster fashion. The
processing starts at the beginning of each row with the cor-
responding start tree identified by index 0. The first opera-
tion performed is the increment of the column index,
followed by an end-of-row check to decide whether a spe-
cial last column tree should be used in place of the current
one.

After processing one pixel, i.e., the traversal of the cur-
rent tree is finished, a goto statement moves the execution
flow to the beginning of the appropriate next tree, and the

Fig. 6. (a) forest of DTrees obtained by applying state prediction on the ODTree of Fig. 4. In this example also the tree used for the first pixel of the row
(tree to the left) is reduced considering external pixels constraints (Section 2.2.2). (b) is the DRAG originated from the compression of the forest (a).
Leaves contain the action to be performed (left) and the index of the next tree/node (right). Root nodes are identified by an octagon (the starting one)
or by circles (all the others) and have an index (left) plus the condition to be checked (right).

BOLELLI ETAL.: ONE DAG TO RULE THEM ALL 3651



process continues for the next pixel. Then, after the current
row has been entirely processed, the for loopmoves the scan-
ning process to the next one, until the whole image has been
processed.

An excerpt of the C++ GRAPHGEN-generated code for the
DRAG of Fig. 6b is provided in Listing 2 and exemplifies
the whole process. As can be noticed, GRAPHGEN translates
the concept of DTree and DRAG into running code as a
bunch of nested if , else and goto statements, that leads the
execution flow of an algorithm.

3 THREE SHOWCASE APPLICATIONS

In this section, three use case applications of GRAPHGEN are
presented and the algorithms generated by the framework
are exhaustively evaluated in comparison with state-of-the-
art solutions. The results discussed in the following have
been obtained on a desktop computer running Windows 10
Pro (x64, build 10.0.18362) with an Intel(R) Core(TM) i7-
4790 CPU @ 3.60 GHz and an NVIDIA Quadro K2200 GPU

using MSVC 19.15.26730 and CUDA 10.0.130 compiler (x64)
with optimizations enabled.

All discussed algorithms (unless noted otherwise) use
decision trees or forests generated by GRAPHGEN. They have
been proved to be correct, i.e., the output result is exactly
the one required by the given task.

The experiments are performed on the publicly available
YACCLAB dataset [41], which covers most of the 2D and
3D applications of the analyzed tasks: video surveillance
(2D-3DPeS [42]), fingerprints, (2D-Fingerprints [43]), medical
(2D-Medical [44], 3D-OASIS [45], and 3D-Mitochondria [46])
and document (2D-Tobacco800 [47], 2D-Hamlet, 2D-
XDOCS [48]) analysis, real-world images (2D-MIRflickr [49]),
and synthetic generated ones (3D-Hilbert curves). The data-
sets have highly variable resolution, density and amount of
components. They originate from highly different sources,
captured through various means (scans, photos, micros-
copy). Full description in [50] and example images in Fig. 7.

3.1 Connected Components Labeling

Connected Components Labeling aims at transforming an
input binary image into a symbolic one, in which all pixels
of the same object (connected component) are given the
same label. The task has been originally introduced by Rose-
nfeld and Pfaltz [51] in 1966 and since then many papers
designed algorithms to improve the efficiency of CCL [36],
[40], [52], [53], [54], [55]. The CCL problem has a unique and
exact solution, meaning that algorithms can use different
strategies, but they must always provide the same output
symbolic image, except for the specific label assigned to
each connected component. The only difference among
them is thus the time required to obtain the result.

For comparing the GRAPHGEN generated algorithms with
existing ones, the open-source benchmarking system YAC-
CLAB [41], [56], [57] has been used. It provides many state-
of-the-art solutions, and allows to fairly compare the perfor-
mance of CCL algorithms under various points of view.

The first significant improvement on CCL has been pro-
vided in [58] with the SAUF algorithm. The authors gener-
ated an optimal decision tree for the Rosenfeld mask
(Fig. 1b) to reduce the average number of load/store opera-
tions during the scan of the input image. In [32] a subse-
quent major breakthrough was introduced (BBDT),
consisting in a 2�2 block-based approach (Fig. 1c), again
based on decision trees. In [36], He et al. demonstrated that
it is possible to use a finite-state machine to summarize the
value of pixels already inspected by the horizontally mov-
ing scan mask, and in [37] the authors combined the deci-
sion trees and configuration transitions in a decision forest
generated from Rosenfeld mask (PRED). In [41], the conver-
sion of a decision tree into a Directed Rooted Acyclic Graph
(DRAG) has proved to be an effective technique to reduce

Fig. 7. Sample images from the YACCLAB datasets. From left to right 3DPeS, Fingerprints, Hamlet, Medical, MIRflickr, Tobacco800, XDOCS,
Hilbert,Mitochondria, and OASIS.

Listing 2. Excerpt of the C++ Code Generated by GRAPHGEN for the DRAG
of Fig. 6b. This example depicts the image scanning approach employed
by GRAPHGEN-generated algorithms, the action performed in the leaves,
the jump to the next tree, and the jump within conditions to reuse existing
subtrees.

3652 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 7, JULY 2022



the machine code footprint and lessen its impact on the
instruction cache when considering large neighborhoods.
Finally, the application of the state prediction approach to
the 2�2 mask (Spaghetti) [30] further improved perfor-
mance, setting the state-of-the-art on CCL.

Starting from the Rosenfeld mask (Fig. 1b), the genera-
tion of an ODTree (Fig. 4) recreates SAUF, the reference
algorithm for the following Average SpeedUp (ASU) com-
parisons (Table 1). Then, the application of state prediction
provides the PRED algorithm (Fig. 6a, ASU=1.103), and the
final compression of the forest into a DRAG (Fig. 6b) produ-
ces PRED++. In this specific case, the effect of compression
is not significant: because the PRED forest is already very
small, reducing the code size does not affect instruction
cache usage.

Tackling the problemwith the Granamask already proved
to be an effective idea, and its GRAPHGEN-generated ODTree
recreates BBDT (ASU=1.396), currently the default algorithm
in OpenCV.Marginal improvements can be obtained by com-
pressing this tree into a DRAG (ASU = 1.399). Generating a
prediction forest which is an uncompressed version of Spa-
ghetti (we called this Tagliatelle) allows again to reduce the
average number ofmemory accesses and conditional ifswhen
dealing with borders, while preserving the benefit of the
block-based approach (ASU = 1.425). Since the Tagliatelle tree
is larger than that of BBDT, applying compression (Spaghetti)
yields a bigger improvement (ASU=1.492). As explained in
Section 2.1, our proposal is also able to consider image fre-
quencies when generating the ODTree. Thanks to this, we are
able to include them in the Spaghetti algorithm, further
improving its speed, and thus outperforming the state-of-the-
art with SpaghettiF (ASU = 1.507). It is important to notice
that frequencies are calculated in this casewith the YACCLAB
dataset, but it is also possible to compute them for specific
problems, opening to further improvements.

3.2 Image Skeletonization

Image skeletonization, another fundamental algorithm used
in many computer vision and image processing tasks, aims
at providing an approximate and compact representation of
the objects inside images, reducing them to one pixel wide
“skeletons”. A common strategy to obtain it, called thinning,
iteratively removes the outermost layers of connected
components [59].

The algorithm proposed by Zhang and Suen (ZS) in [60] is
one of the most famous and widely used, given its efficiency

and simplicity. It is based on the 8-connectivity and exploits
two sub-iterations performed alternatively to remove pixels.
Chen andHsu (CH) fixed some corner cases, and proposed a
Look-Up Table (LUT) to speed up the process [61]. Further-
more, Guo and Hall [62] proposed a solution to better cope
with 2�2 squares and diagonal lines, obtaining skeletons
with less stair case artifacts. Besides the already mentioned
LUT technique, iterations based on decision trees have been
proposed in [63], to further speedup the ZS algorithm. These
solutions have been proposed some decades ago, but are still
commonly used [25], [26], [27] and included in many image
processing libraries, such as OpenCV.

Contrary to CCL, each thinning proposal provides differ-
ent outputs and the choice depends on the application
needs. ZS, CH, and GH algorithms (all using the mask of
Fig. 1a) have been optimized with GRAPHGEN and compared
with the open-source framework THinning evaluation
BEnchmark (THeBE) [64]. Since the base algorithms pro-
duce different outputs, the comparison between execution
times should be done only within each version of the single
algorithm. For each technique, two variants have been man-
ually implemented (naı̈ve and LUT variant, both imple-
menting basic prediction) and three others have been
generated using GRAPHGEN: the Tree version only employs
an ODTree, while the Spaghetti variants include state pre-
diction and forest compression with DRAGs.

When comparing the various implementations within
each algorithm (Table 2), LUT performs better than the
base variant and Tree performs better than LUT by
skipping unnecessary condition checks. Finally, Spaghetti
further improves Tree by applying compression and pre-
diction. Through image frequencies, the execution speed
of the Spaghetti implementation can be slightly improved.
Sometimes, however, frequencies slightly worsen the exe-
cution time, which can be attributed to the complex itera-
tive nature of thinning: at every iteration, the distribution
of patterns in the image changes, limiting the information
gain of frequencies.

3.3 Contours Extraction

In a binary image, a contour is a sequence of foreground
pixels that separates a connected component from the back-
ground. Several methods have been proposed for the repre-
sentation of a contour, among which the chain-code is one
of the most common. The first chain-code variation was pro-
posed by Freeman [65]; it encodes the coordinates of one

TABLE 1
Average Run-Time Experimental Results on 2D CCL Algorithms in Milliseconds

3DPeS Fingerprints Hamlet Medical MIRflickr Tobacco800 XDOCS ASU

SAUF 0.885 0.377 6.900 3.194 0.373 10.611 41.369 1.000
PRED 0.865 0.312 6.297 2.831 0.326 10.126 38.535 1.103
PRED++* 0.866 0.312 6.299 2.831 0.326 10.127 38.531 1.103
BBDT 0.656 0.253 5.065 2.169 0.245 8.200 32.221 1.396
DRAG 0.650 0.253 5.019 2.177 0.247 8.121 32.185 1.399
Tagliatelle* 0.659 0.243 4.975 2.141 0.236 8.077 31.638 1.425
Spaghetti 0.612 0.234 4.766 2.055 0.226 7.702 30.435 1.492
SpaghettiF * 0.610 0.230 4.711 2.026 0.224 7.653 30.225 1.507

ASU is the Average Speed-Up over SAUF. The star identifies novel algorithmic solutions generated with the proposed techniques, all available in GRAPHGEN.
Lower is better.

BOLELLI ETAL.: ONE DAG TO RULE THEM ALL 3653



pixel belonging to the contour, and then follows the bound-
ary, encoding the direction in which the next pixel shall be
found.

Solutions to efficiently retrieve the chain-code from a
binary image have beenwidely studied in literature. Sobel [66]
proposed an algorithm that stores an 8-bit neighborhood code
for each pixel, and performs a table-lookup to generate any
neighborhood function. Suzuki and Abe [67] developed an
extended border following algorithm, which discriminates
between outer and hole borders, and also determines sur-
roundness relations; this is the solution currently imple-
mented in OpenCV. Zingaretti et al. [68] built a chain-code
algorithm able to concurrently process all region boundaries
in a single scan, providing a unified scheme for binary and
gray-level images. Cederberg [69], in particular, proposed an
alternative representation of chain-code, called Raster-scan
Chain-code (RC-code), which can ease the retrieval when
examining the image in a raster scan fashion, and presented
an algorithm implementing this representation. Given its ras-
ter scan nature, which makes possible the application of state
prediction, Cederberg algorithm has been chosen to undergo
GRAPHGEN optimization.

In the RC-code, several coordinates are listed for each
contour, and represent the first pixels that are hit in the bor-
der during the raster scan. Each of these pixels is called
max-point, and is linked to two chains (R-chains), a left and

a right one. A max-point can either be an outer max-point,
when it is a transition from background to object, or an inner
max-point, when at object-background transition. Every
contour pixel met during the scan can either be a max-point
(if it is not connected to any already known R-chain) or the
next link of some existing R-chain. The same pixel can be a
link for multiple R-chains; specifically, a border point that is
a link for both a left and a right R-chain is called min-point,
and determines the end of the two R-chains, which can then
be merged. It also means that the left R-chain continues the
same contour traced by the right R-chain, and therefore
establishes an ordering between max-points of the same
contour.

An RC-code is consequently composed of a list of max-
points with their R-chains. The reconstruction of a contour
starts from a max-point and follows its right R-chain until
the end; then it follows, in reverse order, the connected left
R-chain, and the process goes on until the starting max-
point is met again. When computing the RC-code, is it suffi-
cient to look at the mask of Fig. 1a to know the nature of the
pixel, i.e., whether it is a max-point, a min-point or a chain
link, and consequently know which action must be per-
formed. With GRAPHGEN, a decision tree minimizing the aver-
age number of load/store operations needed to identify the
state of a pixel has been generated. Then, prediction and
code compression have been applied to this optimal deci-
sion tree.

In order to characterize the contour tracing performance,
THeBE has been modified into Benchmark Another Chain-
Code Algorithm (BACCA). The source code is available
in [70]. The reference algorithm is the one implemented by
OpenCV 3.4.7 [67], which uses an extremely optimized con-
tour following approach, while the algorithm proposed by
Cederberg [69] has been implemented in multiple variants:
using lookup tables with and without basic state prediction
(LUT_PRED and LUT), a version based on optimal decision
trees and another one again with state prediction and com-
pression (Spaghetti).

As can be observed in the experiments (Table 3), LUT
implementations fail to compete with the carefully designed
algorithm in OpenCV (ASU < 1). The GRAPHGEN-generated
ODTree already provides a significant speedup (ASU=1.23),
which is further improved by the Spaghetti versions
(ASU=1.28).

The complexity of the algorithm requires a careful design
of the decision table, since one pixel may be a min-point and
a max-point and a chain continuation, requiring multiple
actions to be performed in order. We thus encoded all

TABLE 2
Average Run-Time Experimental Results of Thinning

Algorithms in Milliseconds

Fingerprints Hamlet Tobacco800

GH 8.266 143.946 594.698
GH_LUT 3.6 72.89 296.853
GH_Tree* 2.62 48.699 192.113
GH_Spaghetti* 2.393 47.083 186.593
GH_SpaghettiF * 2.428 50.974 206.593

ZS (OpenCV) 7.224 115.214 452.384
ZS_LUT 3.79 66.154 250.888
ZS_Tree 2.777 45.755 170.75
ZS_Spaghetti* 2.478 43.149 160.728
ZS_SpaghettiF * 2.449 42.979 159.883

CH 5.781 119.745 452.770
CH_LUT 2.812 65.096 239.897
CH_Tree* 3.234 48.560 174.655
CH_Spaghetti* 1.990 48.023 173.554
CH_SpaghettiF * 1.952 47.783 172.633

The star identifies novel algorithmic solutions generated with the proposed
techniques, all available in GRAPHGEN. Lower is better.

TABLE 3
Average Run-Time Experimental Results on Chain-Code Algorithms in Milliseconds

3DPeS Fingerprints Hamlet Medical MIRflickr Tobacco800 XDOCS ASU

Suzuki85 (OpenCV) 0.814 1.332 9.252 3.436 1.291 10.089 50.578 1.000
Cederberg_LUT 2.392 1.733 18.378 7.98 1.96 27.262 118.311 0.499
Cederberg_LUT_PRED 1.524 1.376 12.652 5.371 1.458 17.682 82.825 0.705
Cederberg_Tree* 0.613 1.092 6.749 2.95 1.136 7.534 47.545 1.231
Cederberg_Spaghetti* 0.596 1.052 6.535 2.728 1.069 7.307 46.079 1.284
Cederberg_SpaghettiF * 0.596 1.051 6.528 2.726 1.068 7.304 46.054 1.286

ASU is the Average Speed-Up over OpenCV. The star identifies novel algorithmic solutions generated with the proposed techniques, all available in GRAPHGEN.
Lower is better.

3654 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 7, JULY 2022



possible cases in a bitmapped action number, which in turn
selects the corresponding behavior.

3.4 What About 3D and GPUs?

Our proposal is not limited to 2D images and sequential
CPU processing. While GPUs usually call for ad hoc mas-
sively parallel algorithms, we still evaluated trees generated
by GRAPHGEN on a GPU implementation of CCL. Because of
the parallel nature of GPU processing, state prediction is
not feasible. Therefore, only the optimizations provided by
the ODTree, its compression, and frequencies have been
employed.

We compared the GPU-based BBDT and DRAG imple-
mentations to state-of-the-art CCL algorithms: Distanceless
Label Propagation (DLP) by Cabaret et al. [71], Optimized
Label Equivalence (OLE) by Kalentev et al. [72], Komura
Equivalence1 (KE) by Komura [74], Union Find1 (UF) by Oli-
veira and Lotufo [75], Line Based Union Find (LBUF) by
Yonehara and Aizawa [76], Block Equivalence (BE) by Zava-
lishin et al. [77]. Results are reported in Fig. 8. All GRAPHGEN-
generated versions of BBDT and DRAG obtain a significant
speed-up over KE, which has the lowest execution time
among state-of-the-art algorithms. Since DRAG uses com-
pression over BBDT, a slight advantage in run-time can be
observed. Using image frequencies, DRAGF achieves the
best run-time over all algorithms, 18 percent faster than KE,
the state-of-the-art approach.

The high amount of if- and goto-statements in the gen-
erated decision tree do not allow for efficient massively
parallel and synchronized thread execution, but we have
to consider the fact that branches depend on the pixel dis-
tribution in the mask. Neighboring pixels get processed
concurrently, but they are not i.i.d.. Indeed, they are par-
tially overlapped and definitely correlated. Thus, it is
likely that most of the time, threads will traverse the
same path through the tree/DRAG without causing any
divergence. A similar behavior can be observed on other
datasets (Fig. 10).

GRAPHGEN bases all of its processing on user-defined sets
of rules and therefore enables to construct optimal decision
trees and apply optimizations even on 3D-based algorithms.
We report results only on 3D CCL, but our proposal can be
easily applied to other 3D algorithms.

Due to the increased complexity that comes with 3D
CCL, only algorithms using the Rosenfeld mask can be con-
sidered. For a block-based mask, the number of conditions
and therefore the amount of different cases is too high to be
computed within a reasonable time frame with current com-
puting capabilities. For instance, a complete version of the
BBDT mask in 3D would contain 112 voxels requiring
approximately 1024:68TB of memory. The 3D version of the
Rosenfeld mask contains 14 conditions: 9 voxels on the pre-
vious plane, 3 voxels in the previous row on the same plane,
1 voxel in the same row and same plane as x, and x itself.

The algorithms for 3D CCL generated with the strategy
proposed in this paper are SAUF_3D, using the optimal
decision tree, its DRAG-compressed version SAUF++_3D,
PRED_3D, which adds state prediction, and its compressed
version PRED++_3D. As a comparison, a naive 3D imple-
mentation of CCL that reads all neighbors and tries to
merge all labels and the state-of-the-art for 3D CCL, Label-

Fig. 8. Average run-time experimental results on 2D CCL algorithms on
GPU on the Hamlet dataset in milliseconds. The star identifies novel
algorithms generated with GRAPHGEN. Lower is better.

Fig. 9. Average run-time experimental results on 3D CCL algorithms in
milliseconds. The star identifies novel algorithmic solutions generated
with the proposed techniques, all available in GRAPHGEN. Lower is better.

1. Originally designed for 4-connectivity and later extended to 8-
connectivity in [73].

BOLELLI ETAL.: ONE DAG TO RULE THEM ALL 3655



Equivalence-Based CCL by He et al. [78] (LEB) were bench-
marked. LEB employs a handmade decision tree for the
Rosenfeld 3Dmask, built with a strategy that prioritizes pix-
els with the most neighbors. Fig. 9 shows the effectiveness
of our proposal also in this case.

4 CONCLUSION

We presented a suite of algorithms that allows to generate
optimal decision trees, and to automatically apply state pre-
diction, compression and path-length optimization based
on frequencies to any binary image processing problem.
The only requirement for the user is to model his needs as a
set of rules. The effectiveness of the proposed solution has
been showcased on three different common binary image
processes, covering both 2D and 3D scenarios. The GRAPH-

GEN-generated algorithms significantly improve the state-of-
the-art. The source code of the proposed framework and its
documentation are available in [31].

REFERENCES

[1] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in Proc. Int. Conf.
Med. Image Comput. Comput.-Assisted Intervention, 2015, pp. 234–
241.

[2] G. Litjens et al., “A survey on deep learning in medical image ana-
lysis,”Med. Image Anal., vol. 42, pp. 60–88, 2017.

[3] L. Canalini, F. Pollastri, F. Bolelli, M. Cancilla, S. Allegretti, and C.
Grana, “Skin lesion segmentation ensemble with diverse training
strategies,” in Proc. Int. Conf. Comput. Anal. Images Patterns, 2019,
pp. 89–101.

[4] Y. Zhou et al., “Collaborative learning of semi-supervised segmen-
tation and classification for medical images,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2019, pp. 2074–2083.

[5] F. Pollastri, F. Bolelli, R. Paredes, and C. Grana, “Augmenting
data with GANs to segment melanoma skin lesions,” Multimedia
Tools Appl., vol. 79, no. 21/22, pp. 15 575–15 592, 2019.

[6] L. Baraldi, C. Grana, and R. Cucchiara, “Hierarchical boundary-
aware neural encoder for video captioning,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2017, pp. 3185–3194.

[7] F. Bolelli, L. Baraldi, F. Pollastri, and C. Grana, “A hierarchical
quasi-recurrent approach to video captioning,” in Proc. IEEE Int.
Conf. Image Process. Appl. Syst., 2018, pp. 162–167.

Fig. 10. Average run-time experimental results on 2D CCL algorithms on GPU in milliseconds. The star identifies novel algorithms generated with
GRAPHGEN. Lower is better.

3656 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 7, JULY 2022



[8] B. Wang, L. Ma, W. Zhang, W. Jiang, J. Wang, and W. Liu,
“Controllable video captioning with POS sequence guidance
based on gated fusion network,” in Proc. IEEE Int. Conf. Comput.
Vis., 2019, pp. 2641–2650.

[9] C.-Y. Wu, C. Feichtenhofer, H. Fan, K. He, P. Krahenbuhl, and
R. Girshick, “Long-term feature banks for detailed video under-
standing,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2019, pp. 284–293.

[10] X. Yang, X. Yang, M.-Y. Liu, F. Xiao, L. S. Davis, and J. Kautz,
“STEP: Spatio-temporal progressive learning for video action
detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2019, pp. 264–272.

[11] A. K. Bhunia, A. Das, A. K. Bhunia, P. S. R. Kishore, and P. P. Roy,
“Handwriting recognition in low-resource scripts using adversar-
ial learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit., 2019, pp. 4762–4771.

[12] T. Wilkinson, J. Lindstrom, and A. Brun, “Neural Ctrl-F: Segmen-
tation-free query-by-string word spotting in handwritten manu-
script collections,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 4443–4452.

[13] I. H. Laradji, N. Rostamzadeh, P. O. Pinheiro, D. Vazquez, and
M. Schmidt, “Where are the Blobs: Counting by localization with
point supervision,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 547–562.

[14] B. Li, W. Ouyang, L. Sheng, X. Zeng, and X. Wang, “GS3D: An
efficient 3D object detection framework for autonomous driving,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 1019–1028.

[15] G. M�attyus, W. Luo, and R. Urtasun, “DeepRoadMapper: Extract-
ing road topology from aerial images,” in Proc. IEEE Int. Conf.
Comput. Vis., 2017, pp. 3458–3466.

[16] A. Palazzi, D. Abati, S. Calderara, F. Solera, and R. Cucchiara,
“Predicting the driver’s focus of attention: The DR (eye) VE project,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 7, pp. 1720–1733,
Jul. 2019.

[17] M. Fabbri, F. Lanzi, S. Calderara, A. Palazzi, R. Vezzani, and
R. Cucchiara, “Learning to detect and track visible and occluded
body joints in a virtual world,” in Proc. Eur. Conf. Comput. Vis.,
2018, pp. 450–466.

[18] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi,
“Performance measures and a data set for multi-target, multi-
camera tracking,” in Proc. Eur. Conf. Comput. Vis., 2016, pp. 17–35.

[19] C. Liu et al., “Orthogonal decomposition network for pixel-wise
binary classification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2019, pp. 6057–6066.

[20] W. Chen and J. Hays, “SketchyGAN: Towards diverse and realis-
tic sketch to image synthesis,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2018, pp. 9416–9425.

[21] P. Tschandl, C. Rosendahl, and H. Kittler, “The HAM10000 dataset,
a large collection of multi-source dermatoscopic images of common
pigmented skin lesions,” Sci. Data, vol. 5, 2018, Art. no. 180161.

[22] G. Yang, X. Song, C. Huang, Z. Deng, J. Shi, and B. Zhou,
“DrivingStereo: A large-scale dataset for stereo matching in
autonomous driving scenarios,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 899–908.

[23] T. Falk et al., “U-Net: Deep learning for cell counting, detection,
and morphometry,” Nat. Methods, vol. 16, no. 1, pp. 67–70, 2019.

[24] F. Milletari et al., “Hough-CNN: Deep learning for segmentation
of deep brain regions in MRI and ultrasound,” Comput. Vis. Image
Understanding, vol. 164, pp. 92–102, 2017.

[25] J. Khodadoust and A. M. Khodadoust, “Fingerprint indexing
based on minutiae pairs and convex core point,” Pattern Recognit.,
vol. 67, pp. 110–126, 2017.

[26] F. Uslu and A. A. Bharath, “A recursive Bayesian approach to
describe retinal vasculature geometry,” Pattern Recognit., vol. 87,
pp. 157–169, 2019.

[27] X. Wang, X. Jiang, and J. Ren, “Blood vessel segmentation from
fundus image by a cascade classification framework,” Pattern Rec-
ognit., vol. 88, pp. 331–341, 2019.

[28] S. Hannuna et al., “DS-KCF: A real-time tracker for RGB-D data,”
J. Real-Time Image Process., vol. 16, no. 5, pp. 1439–1458, Oct. 2019.

[29] W.-C. Tu, S. He, Q. Yang, and S.-Y. Chien, “Real-time salient
object detection with a minimum spanning tree,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2016, pp. 2334–2342.

[30] F. Bolelli, S. Allegretti, L. Baraldi, and C. Grana, “Spaghetti label-
ing: Directed acyclic graphs for block-based connected compo-
nents labeling,” IEEE Trans. Image Process., vol. 29, pp. 1999–2012,
2019.

[31] graphgen source sode. Accessed: Dec. 15, 2020. [Online]. Avail-
able: https://github.com/prittt/GRAPHGEN

[32] C. Grana, D. Borghesani, and R. Cucchiara, “Optimized block-
based connected components labeling with decision trees,” IEEE
Trans. Image Process., vol. 19, no. 6, pp. 1596–1609, Jun. 2010.

[33] H. Schumacher and K. C. Sevcik, “The synthetic approach to deci-
sion table conversion,” Commun. ACM, vol. 19, no. 6, pp. 343–351,
Jun. 1976.

[34] C. Grana, M. Montangero, and D. Borghesani, “Optimal decision
trees for local image processing algorithms,” Pattern Recognit.
Lett., vol. 33, no. 16, pp. 2302–2310, 2012.

[35] T. Huang, G. Yang, and G. Tang, “A fast two-dimensional median
filtering algorithm,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 27, no. 1, pp. 13–18, Feb. 1979.

[36] L. He, X. Zhao, Y. Chao, and K. Suzuki, “Configuration-transition-
based connected-component labeling,” IEEE Trans. Image Process.,
vol. 23, no. 2, pp. 943–951, Feb. 2014.

[37] C. Grana, L. Baraldi, and F. Bolelli, “Optimized connected compo-
nents labeling with pixel prediction,” in Proc. Int. Conf. Adv. Con-
cepts Intell. Vis. Syst., 2016, pp. 431–440.

[38] K. Wu, E. Otoo, and K. Suzuki, “Optimizing two-pass connected-
component labeling algorithms,” Pattern Anal. Appl., vol. 12, no. 2,
pp. 117–135, 2009.

[39] S. R. Buss, “Alogtime algorithms for tree isomorphism, compari-
son, and canonization,” in Proc. Kurt G€odel Colloq. Comput. Logic
Proof Theory, 1997, pp. 18–33.

[40] F. Bolelli, L. Baraldi, M. Cancilla, and C. Grana, “Connected com-
ponents labeling on DRAGs,” in Proc. 24th Int. Conf. Pattern Recog-
nit., 2018, pp. 121–126.

[41] F. Bolelli, M. Cancilla, L. Baraldi, and C. Grana, “Towards reliable
experiments on the performance of connected components labeling
algorithms,” J. Real-Time Image Process., vol. 17, no. 2, pp. 229–244,
2018.

[42] D. Baltieri, R. Vezzani, and R. Cucchiara, “3DPeS: 3D people data-
set for surveillance and forensics,” in Proc. Joint ACM Workshop
Hum. Gesture Behav. Understanding, 2011, pp. 59–64.

[43] D. Maltoni, D. Maio, A. Jain, and S. Prabhakar, Handbook of Finger-
print Recognition. Berlin, Germany: Springer, 2009.

[44] F. Dong et al., “Computational pathology to discriminate benign
from malignant intraductal proliferations of the breast,” PloS One,
vol. 9, no. 12, 2014, Art. no. e114885.

[45] D. S. Marcus, A. F. Fotenos, J. G. Csernansky, J. C. Morris, and
R. L. Buckner, “Open access series of imaging studies (OASIS):
Longitudinal MRI data in nondemented and demented older
adults,” J. Cogn. Neurosci., vol. 22, no. 12, pp. 2677–2684, 2010.

[46] A. Lucchi, Y. Li, and P. Fua, “Learning for structured prediction
using approximate subgradient descent with working sets,” in
Proc. IEEEConf. Comput. Vis. Pattern Recognit., 2013, pp. 1987–1994.

[47] D. Lewis, G. Agam, S. Argamon, O. Frieder, D. Grossman, and
J. Heard, “Building a test collection for complex document infor-
mation processing,” in Proc. 29th Annu. Int. ACM SIGIR Conf. Res.
Develop. Inf. Retrieval, 2006, pp. 665–666.

[48] F. Bolelli, G. Borghi, and C. Grana, “XDOCS: An application to
index historical documents,” in Proc. Italian Res. Conf. Digit. Librar-
ies, 2018, pp. 151–162.

[49] M. J. Huiskes and M. S. Lew, “The MIR flickr retrieval eval-
uation,” in Proc. Int. Conf. Multimedia Inf. Retrieval, 2008, pp. 39–43.

[50] S. Allegretti, F. Bolelli, and C. Grana, “Optimized block-based
algorithms to label connected components on GPUs,” IEEE Trans.
Parallel Distrib. Syst., vol. 31, no. 2, pp. 423–438, Feb. 2020.

[51] A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital pic-
ture processing,” J. ACM, vol. 13, no. 4, pp. 471–494, 1966.

[52] C. Grana, D. Borghesani, and R. Cucchiara, “Fast block based con-
nected components labeling,” in Proc. 16th IEEE Int. Conf. Image
Process., 2009, pp. 4061–4064.

[53] L. He and Y. Chao, “A very fast algorithm for simultaneously per-
forming connected-component labeling and euler number compu-
ting,” IEEE Trans. Image Process., vol. 24, no. 9, pp. 2725–2735, Sep.
2015.

[54] F. Bolelli, M. Cancilla, and C. Grana, “Two more strategies to
speed up connected components labeling algorithms,” in Proc. Int.
Conf. Image Anal. Process., 2017, pp. 48–58.

[55] L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao, “The con-
nected-component labeling problem: A review of state-of-the-art
algorithms,” Pattern Recognit., vol. 70, pp. 25–43, 2017.

[56] C. Grana, F. Bolelli, L. Baraldi, and R. Vezzani, “YACCLAB - Yet
another connected components labeling benchmark,” in Proc. 23rd
Int. Conf. Pattern Recognit., 2016, pp. 3109–3114.

BOLELLI ETAL.: ONE DAG TO RULE THEM ALL 3657

https://github.com/prittt/GRAPHGEN


[57] YACCLAB source code. Accessed: Dec. 15, 2020. [Online]. Avail-
able: https://github.com/prittt/YACCLAB

[58] K. Wu, E. Otoo, and K. Suzuki, “Optimizing two-pass connected-
component labeling algorithms,” Pattern Anal. Appl., vol. 12, no. 2,
pp. 117–135, 2009.

[59] E. S. Deutsch, “Thinning algorithms on rectangular, hexagonal,
and triangular arrays,” Commun. ACM, vol. 15, no. 9, pp. 827–837,
1972.

[60] T. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning
digital patterns,” Commun. ACM, vol. 27, no. 3, pp. 236–239, 1984.

[61] Y.-S. Chen and W.-H. Hsu, “A modified fast parallel algorithm for
thinning digital patterns,” Pattern Recognit. Lett., vol. 7, no. 2,
pp. 99–106, 1988.

[62] Z. Guo and R. W. Hall, “Parallel thinning with two-subiteration
algorithms,” Commun. ACM, vol. 32, no. 3, pp. 359–373, 1989.

[63] C. Grana, D. Borghesani, and R. Cucchiara, “Decision trees for fast
thinning algorithms,” in Proc. 20th Int. Conf. Pattern Recognit.,
2010, pp. 2836–2839.

[64] THeBE source code. Accessed: Dec. 15, 2020. [Online]. Available:
https://github.com/prittt/THeBE

[65] H. Freeman, “On the encoding of arbitrary geometric configu-
rations,” IRE Trans. Electron. Comput., vol. EC-10, no. 2, pp. 260–
268, Jun. 1961.

[66] I. Sobel, “Neighborhood coding of binary images for fast contour
following and general binary array processing,” Comput. Graph.
Image Process., vol. 8, no. 1, pp. 127–135, 1978.

[67] S. Suzuki and K. Abe, “Topological structural analysis of digitized
binary images by border following,” Comput. Vis. Graph. Image
Process., vol. 30, no. 1, pp. 32–46, 1985.

[68] P. Zingaretti, M. Gasparroni, and L. Vecci, “Fast chain coding of
region boundaries,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20,
no. 4, pp. 407–415, Apr. 1998.

[69] R. L. Cederberg, “Chain-link coding and segmentation for
raster scan devices,” Comput. Graph. Image Process., vol. 10, no. 3,
pp. 224–234, 1979.

[70] BACCA source code. Accessed: Dec. 15, 2020. [Online]. Available:
https://github.com/prittt/BACCA

[71] L. Cabaret, L. Lacassagne, and D. Etiemble, “Distanceless label
propagation: An efficient direct connected component labeling
algorithm for GPUs,” in Proc. 7th Int. Conf. Image Process. Theory
Tools Appl., 2017, pp. 1–6.

[72] O. Kalentev, A. Rai, S. Kemnitz, and R. Schneider, “Connected
component labeling on a 2D grid using CUDA,” J. Parallel Distrib.
Comput., vol. 71, no. 4, pp. 615–620, 2011.

[73] S. Allegretti, F. Bolelli, M. Cancilla, and C. Grana, “Optimizing
GPU-based connected components labeling algorithms,” in Proc.
IEEE Int. Conf. Image Process. Appl. Syst., 2018, pp. 175–180.

[74] Y. Komura, “GPU-based cluster-labeling algorithm without the
use of conventional iteration: Application to the Swendsen–Wang
multi-cluster spin flip algorithm,” Comput. Phys. Commun.,
vol. 194, pp. 54–58, 2015.

[75] V. M. Oliveira and R. A. Lotufo, “A study on connected compo-
nents labeling algorithms using GPUs,” in Proc. 23rd SIBGRAPI
Conf. Graph. Patterns Images, 2010, Art. no. 4.

[76] K. Yonehara and K. Aizawa, “A line-based connected component
labeling algorithm using GPUs,” in Proc. 3rd Int. Symp. Comput.
Netw., 2015, pp. 341–345.

[77] S. Zavalishin, I. Safonov, Y. Bekhtin, and I. Kurilin, “Block equiva-
lence algorithm for labeling 2D and 3D images on GPU,” Electron.
Imag., vol. 2016, no. 2, pp. 1–7, 2016.

[78] L. He, Y. Chao, and K. Suzuki, “Two efficient label-equivalence-
based connected-component labeling algorithms for 3-D binary
images,” IEEE Trans. Image Process., vol. 20, no. 8, pp. 2122–2134,
Aug. 2011.

Federico Bolelli (Member, IEEE) received the
BSc and MSc degrees in computer engineering
from the Universit�a degli Studi di Modena e
Reggio Emilia, Modena, Italy, and the PhD
degree from the Universit�a degli Studi di Modena
e Reggio Emilia, Modena, Italy, where he is cur-
rently working as a postdoctoral researcher within
the AImageLab Group, Dipartimento di Ingegne-
ria “Enzo Ferrari.” His research interests include
image processing, algorithms and optimization,
medical imaging, deep learning, and historical
document analysis.

Stefano Allegretti received the BSc and MSc
degrees in computer engineering from the
Universit�a degli Studi di Modena e Reggio Emilia,
Modena, Italy. He is currently working toward the
PhD degree from the AImageLab Laboratory,
Dipartimento di Ingegneria “Enzo Ferrari,”
Universit�a degli Studi di Modena e Reggio Emilia,
Modena, Italy. His research interests include
image processing, algorithms and optimization,
deep learning, and medical imaging.

Costantino Grana (Member, IEEE) received the
graduate degree from the Universit�a degli Studi
di Modena e Reggio Emilia, Modena, Italy, in
2000, and the PhD degree in computer science
and engineering, in 2004. He is currently a full
professor with the Dipartimento di Ingegneria
“Enzo Ferrari,” Universit�a degli studi di Modena e
Reggio Emilia, Italy. His research interests
include mainly in computer vision and multimedia
and include medical imaging, image processing,
analysis of digital images of historical manu-

scripts and other cultural heritage resources, multimedia image and
video retrieval, and color based applications. He published five book
chapters, 38 papers on international peer-reviewed journals and more
than 100 papers on international conferences.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3658 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 7, JULY 2022

https://github.com/prittt/YACCLAB
https://github.com/prittt/THeBE
https://github.com/prittt/BACCA


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


