Monolayer transition-metal dichalcogenides in the T′ phase could enable the realization of the quantum spin Hall effect1 at room temperature, because they exhibit a prominent spin–orbit gap between inverted bands in the bulk2,3. Here we show that the binding energy of electron–hole pairs excited through this gap is larger than the gap itself in the paradigmatic case of monolayer T′ MoS2, which we investigate from first principles using many-body perturbation theory4. This paradoxical result hints at the instability of the T′ phase in the presence of spontaneous generation of excitons, and we predict that it will give rise to a reconstructed ‘excitonic insulator’ ground state5–7. Importantly, we show that in this monolayer system, topological and excitonic order cooperatively enhance the bulk gap by breaking the crystal inversion symmetry, in contrast to the case of bilayers8–16 where the frustration between the two orders is relieved by breaking time reversal symmetry13,15,16. The excitonic topological insulator is distinct from the bare topological phase because it lifts the band spin degeneracy, which results in circular dichroism. A moderate biaxial strain applied to the system leads to two additional excitonic phases, different in their topological character but both ferroelectric17,18 as an effect of electron–electron interaction.

A monolayer transition-metal dichalcogenide as a topological excitonic insulator / Varsano, D.; Palummo, M.; Molinari, E.; Rontani, M.. - In: NATURE NANOTECHNOLOGY. - ISSN 1748-3387. - 15:5(2020), pp. 367-372. [10.1038/s41565-020-0650-4]

A monolayer transition-metal dichalcogenide as a topological excitonic insulator

Palummo M.;Molinari E.;Rontani M.
2020

Abstract

Monolayer transition-metal dichalcogenides in the T′ phase could enable the realization of the quantum spin Hall effect1 at room temperature, because they exhibit a prominent spin–orbit gap between inverted bands in the bulk2,3. Here we show that the binding energy of electron–hole pairs excited through this gap is larger than the gap itself in the paradigmatic case of monolayer T′ MoS2, which we investigate from first principles using many-body perturbation theory4. This paradoxical result hints at the instability of the T′ phase in the presence of spontaneous generation of excitons, and we predict that it will give rise to a reconstructed ‘excitonic insulator’ ground state5–7. Importantly, we show that in this monolayer system, topological and excitonic order cooperatively enhance the bulk gap by breaking the crystal inversion symmetry, in contrast to the case of bilayers8–16 where the frustration between the two orders is relieved by breaking time reversal symmetry13,15,16. The excitonic topological insulator is distinct from the bare topological phase because it lifts the band spin degeneracy, which results in circular dichroism. A moderate biaxial strain applied to the system leads to two additional excitonic phases, different in their topological character but both ferroelectric17,18 as an effect of electron–electron interaction.
2020
15
5
367
372
A monolayer transition-metal dichalcogenide as a topological excitonic insulator / Varsano, D.; Palummo, M.; Molinari, E.; Rontani, M.. - In: NATURE NANOTECHNOLOGY. - ISSN 1748-3387. - 15:5(2020), pp. 367-372. [10.1038/s41565-020-0650-4]
Varsano, D.; Palummo, M.; Molinari, E.; Rontani, M.
File in questo prodotto:
File Dimensione Formato  
A monolayer transition.pdf

Open Access dal 02/09/2020

Tipologia: Versione originale dell'autore proposta per la pubblicazione
Dimensione 3.32 MB
Formato Adobe PDF
3.32 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1226958
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 57
social impact