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Monolayer transition metal dichalcogenides in the T ′ phase promise to realize the quantum

spin Hall (QSH) effect1 at room temperature, because they exhibit a prominent spin-orbit gap

between inverted bands in the bulk2, 3. Here we show that the binding energy of electron-hole

pairs excited through this gap is larger than the gap itself in MoS2, a paradigmatic material

that we investigate from first principles by many-body perturbation theory4 (MBPT). This

paradoxical result hints at the instability of the T ′ phase against the spontaneous genera-

tion of excitons, and indeed we find that it gives rise to a recostructed ‘excitonic insulator’

ground state5–9. Importantly, we show that in this system topological and excitonic order

cooperatively enhance the bulk gap by breaking the crystal inversion symmetry, in contrast

to the case of bilayers10–18 where the frustration between the two orders is relieved by break-

ing time reversal symmetry15, 17, 18. The excitonic topological insulator departs distinctively
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from the bare topological phase as it lifts the band spin degeneracy, which results in circular

dichroism. A moderate biaxial strain applied to the system leads to two additional exci-

tonic phases, different in their topological character but both ferroelectric19, 20 as an effect of

electron-electron interactions.

The monolayer transition metal dichalcogenides that were recently proposed as candidates

for the QSH effect all have overlapping metal-d conduction and chalcogenide-p valence bands2.

Such ‘band inversion’ makes the system either a narrow-gap semiconductor, due to p−d spin-orbit

hybridization (Fig. 1c), or a semimetal, whose band edges are displaced in momentum space. In

both cases long-range Coulomb attraction, which is poorly screened in two dimensions, tends to

bind electrons (e) at the bottom of conduction band with holes (h) at the top of valence band, thus

giving rise to excitons. If the e-h binding energy is larger than the semiconductor gap (or if it

is non vanishing in the semimetal), then excitons will spontaneoulsy form and condense, until a

correlated gapped phase is built at thermodynamic equilibrium: the excitonic insulator proposed

in the sixties5–8. This paradigm has been recently invoked for the QSH insulator WTe2, as its

bulk gap is strongly sensitive to temperature21–23 and doping24, whereas in the absence of excitonic

effects MBPT predicts semimetallic behaviour2. Mounting evidence of the excitonic insulator has

been accumulating in the last two years in low-dimensional materials16, 25–27—noticeably transition

metal dichalcogenides28–30.

The relation between topological and excitonic order is intriguing, as the former emerges

in a noninteracting picture whereas the latter is driven by e-h interactions. So far the problem
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has been discussed for bilayers14–18: the spin-orbit gap, associated with topological order, depends

on interlayer tunneling but the exciton binding does not, as e and h in separate layers remain

bound by long-range attraction. This leads to scenarioes of frustration between the QSH phase

and the topologically trivial excitonic phase. The monolayer case is different, since screening is

suppressed as the gap opens: here both spin-orbit gap and exciton binding are affected by interband

hybridization.

Here we study an archetypical member of the T ′ family of QSH candidates, monolayer

MoS2, through first-principles calculations by means of MBPT, and take into account e-h binding

by solving the Bethe-Salpeter equation31. This allows us to assess the inherent excitonic insta-

bility of the material. We then demonstrate the coexistence of topological and excitonic orders

through a self-consistent approach, which predicts a chiral ground state wave function with unique

fingerprints.

Results

Exciton binding and instability. In spite of the small point symmetry group, T ′-MoS2 has an

inversion center, located at the midpoint between two neighbour Mo atoms (black dot in Fig. 1a):

these form a zig-zag chain, parallel to the y axis, which is characteristic of the T ′ phase. We com-

pute the energy bands from first principles, including spin-orbit interaction at the density functional

theory (DFT) level, and then evaluating many-body corrections within the GW approximation

(Methods). The resulting band structure is highly anisotropic (Fig. 1b), the conduction band being
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Figure 1: Electronic band structure of T′-MoS2. a, Stick-and-ball model of the crystal (projec-

tion on the plane of Mo atoms). The turquoise (yellow) colour labels Mo (S) atoms, and the light /

dark shadow distinguishes S atoms lying above / below the Mo plane. The black dot highlights the

inversion center, located at midpoint between two Mo atoms. The y axis of the unitary cell (black

frame) is parallel to the Mo zig-zag chain. b, Plot of conduction and valence energy bands, as

obtained from first-principles many-body perturbation theory (GW). The unit of ki is 2π/ai, with

ai being the lattice constant in the ith direction, i = x, y. c, Band dispersion along the Γ − Λ cut

(red line in panel b) from density functional theory (DFT, dashed curve) and GW (solid curve) cal-

culations, respectively. Absolute values of GW bands are shifted in energy to facilitate comparison

with DFT bands. Insets show the isosurfaces of Bloch state wave functions at the Γ point, with

blue / red colours distinguishing negative / positive values.
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almost flat in the direction perpendicular to the zig-zag chain. The cut of energy surfaces along the

ΓΛ direction (dashed red line in the Brillouin zone domain of Fig. 1b) clarifies why T ′-MoS2 is a

QSH insulator. As shown in Fig. 1c, the overlap of p and d bands forms two valleys located at k

= ±Λ, similar to Dirac valleys of graphene. Like in the Kane-Mele model1, spin-orbit interaction

opens a gap, acting as a valley-dependent magnetic field for each spin species: hence the valley

contributions to the topological invariant Z2 do not cancel out1, 2. Importantly, the GW renormal-

ization of the DFT gap is gigantic (respectively solid and dashed lines in Fig. 1c), which points to

the relevance of electronic interactions.

From the solution of Bethe-Salpeter equation (Methods) we find that the binding energy of

the lowest exciton exceeds the GW gap by 32 meV, hence T ′-MoS2 is unstable against the spon-

taneous generation of excitons. The exciton probability weight in momentum space is localized

in the two Λ valleys (Fig. 2b): the weight is stretched along the kx direction, following the en-

ergy profile of uncorrelated e-h pairs excited with zero total momentum. This exciton is eight-fold

degenerate within numerical accuracy, as multiplet states include both bonding and antibonding

combinations of the wave functions in the two valleys, for all possible e and h spin projections

along the two-fold screw axis y (cf. Fig. 1a); the spin full rotational symmetry is reduced to a rank-

two representation by spin-orbit interaction. The exciton wave function in real space is shown in

Fig. 2a as the conditional probability of finding a bound electron (red colour), provided the hole

position is fixed (black dot): this density is substantially delocalized in the direction of the Mo

zig-zag chain, consistently with Fig. 2b.
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Figure 2: Exciton wave function from first principles. a, Exciton wave function square mod-

ulus, as obtained from Bethe-Salpeter equation (GW-BSE). The contour plot (red colour) is the

probability density to locate the bound electron once the hole position is fixed (black dot). The

figure contains 21 and 69 unit cells in the x and y direction, respectively. Note the delocalization

in real space along the y direction of Mo zig-zag chains. b, Exciton wave function square modulus

in the reciprocal space region around the Λ points.
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Figure 3: Topological vs excitonic order. a-c, Sketches of gap-opening mechanisms. Starting

from the semimetal in the absence of interband hybridization (panel a), a gap opens due to spin-

orbit coupling, ∆SO (panel b). The self-consistent excitonic hybridization, ∆X, further increases

the gap (panel c), which is ≈ 2 |∆SO + ∆X| for the spin branch λ = + and located close to Λ.

d-h, Contour maps of half e − h excitation energy of the semimetal, |ξ(k)| (panel d), ∆SO (real

and imaginary parts respectively in panels e and f), ∆X (panels g and h). Since both Im{∆SO} and

Re{∆X} vanish around Λ, the two remaining gap-opening components, Re{∆SO} and Im{∆X},

add together without interfering.
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Topological excitonic insulator. The excitonic instability reminds us of the Cooper problem of

two bound electrons filling a Fermi sea: whereas the gluing of e − e pairs heralds the transition

to the Bardeen-Cooper-Schrieffer superconductor, the strong binding of e − h pairs signals the

formation of the excitonic insulator: both Cooper pairs and excitons collectively enforce the many-

body gap, which is the self-consistent order parameter32. Were T ′-MoS2 a semimetal (Fig. 3a),

the analogy would be complete at the formal level, as the excitonic order parameter, ∆X, would

then hybridize conduction and valence bands, opening a gap7. However, the actual bands are

effectively hybridized by spin-orbit interaction, ∆SO (Fig. 3b), hence the role of ∆X requires further

clarification (Fig. 3c).

Following the seminal work by Volkov and Kopaev9, a key observation is that ∆SO and

∆X have opposite parity in k space. In order to preserve the inversion symmetry of the crystal,

∆SO must be odd, ∆SO(k) = −∆SO(−k), as the periodic parts of conduction and valence states

transform like py and dyz orbitals, respectively, as illustrated by their wave functions at Γ (insets

in Fig. 1c). Since ∆X is associated to the lowest-exciton wave function in k space32, it must

have s-wave symmetry, ∆X(k) = ∆X(−k). Besides, the spin degeneracy associated with the

exciton that drives the instability rules out the breaking of time reversal symmetry. Together, these

conditions provide us with a tractable two-band model, by reducing the number of independent

order parameters from eight (the spin-resolved, complex interband hybridizations) to two, i.e., the

real and imaginary parts of ∆X(k) (see Methods).

8



kx

ky

d

eV

a b c

e

L

L L

Figure 4: Signatures of the topological excitonic insulator. a-b, Energy bands of the topological

excitonic insulator along directions kx = 0 (panel a, solid line) and ky = Λ (panel b, solid black

and red lines label opposite spin projections). The two-fold rotational symmetry along the y axis

preserves spin degeneracy for kx = 0. Dotted lines are first-principles GW data and dashed lines

are effective-mass fits for ∆X = 0. c, Contour map of lowest e − h excitation energy in k space,

Ec(k) −Ev(k). White dashed lines are the cuts shown in panels a and b. d, Optical absorption

configuration: the wave vectors of incoming circularly polarized photons lie in the vertical plane

containing the Mo zigzag chain (sketch). e, Contour map of the degree of optical polarization, η(k),

as defined in the text, which depends on the energy of the photon absorbed in the edge transition

shown in panel c.
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The mean-field Hamiltonian in k space, Ĥ(k) = ĤQSH(k) + ĤX(k), is therefore a 4 × 4

matrix that acts on vectors spanned by spin-resolved p and d Bloch states at Γ. It adds the excitonic

term, ĤX, to the single particle term, ĤQSH, based on an effective-mass model2 of GW bands:

ĤQSH =
εp + εd

2
Îτ ⊗ Îσ +

εp − εd
2

τ̂z ⊗ Îσ − Im{∆SO}τ̂y ⊗ Îσ + Re{∆SO}τ̂x ⊗ σ̂x. (1)

Here the model parameters are the band inversion and effective masses of p and d energy bands,

εp(k) and εd(k) [plotted in Fig. 3d as ξ(k) = (εp − εd) /2 ], as well as the velocities, v1 and

v2, associated with the complex spin-orbit interaction, ∆SO(k) = ~v2ky − i~v1kx (Figs. 3e and

3f). σ̂α and Îσ are the 2 × 2 Pauli matrices and identity in spin space, whereas τ̂α and Îτ act on

the pseudospin space of p and d orbital components (α = x, y, z). The chosen parameters provide

good matching between model and first-principles GW bands (respectively dashed and dotted lines

in Figs. 4a and 4b) in the k-space region of interest. The excitonic hybridization, ∆X(k), which

appears in

ĤX = Re{∆X}τ̂x ⊗ Îσ − Im{∆X}τ̂y ⊗ σ̂x, (2)

is obtained numerically (Figs. 3g and 3h) by solving two self-consistent coupled equations [see

(6) and (7) below], ruled by the screened Coulomb interaction, W (k), which we extract from first

principles (Supplementary Figure 1). In the QSH phase these equations only admit the trivial

solution, ∆X = 0. The agreement between effective-mass (Supplementary Figure 2) and first-

principles (Fig. 2b) exciton wave functions points to the reliability of the two-band model.

The conduction and valence bands of the excitonic insulator are respectively Ecλ(k) =

(εp + εd)/2 + Ekλ and Evλ(k) = (εp + εd)/2 − Ekλ, where Ekλ =
[
ξ2 + |∆SO λ ∆X|2

]1/2
and
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λ = ± is a quantum label that reduces to the spin projection in the absence of spin-orbit interac-

tion. Low-lying e− h excitations close to the gap (Fig. 4c), of energies Ecλ(k)−Evλ′(k), occur at

the pristine semimetal Fermi surface, which is an ellipse in k space obeying ξ = 0 (white colour

in Fig. 3d). In particular, as shown in Figs. 3e-h, at Λ points both Im{∆SO} and Re{∆X} vanish,

hence Re{∆SO} and Im{∆X} add quadratically without interfering, resulting in the approximate

gap value Ecλ(Λ) − Evλ′(Λ) = 2 [(Re{∆SO})2 + (Im{∆X})2]
1/2. Therefore, the insulator is si-

multaneously excitonic and topological (QSHX), as an effect of the self-organization of ∆X(k).

This may be checked most easily by adiabatic continuation, since the pristine QSH gap smoothly

increases as the temperature is lowered below the critical value of the QSHX phase, around 700 K

(blue curve in Fig. 5b). We explicitly calculate Z2 in Supplementary Note 1.

Fingerprints The excitonic hybridization spontaneously breaks the inversion symmetry of the

crystal (ĤX anticommutes with the inversion operator, Î = −τ̂z ⊗ Îσ), which leads to clear-cut

observable properties. The Kramers degeneracy of bands is lifted, as shown in Fig. 4b (black and

red solid lines point to the two spin projections), with band splittings reaching a maximum of

about 20 meV for kx ∼ 0.05 − 0.1 [units of (2π)/ax] and vanishing on the ΓΛ line (solid black

line in Fig. 4a), as a consequence of the two-fold rotational symmetry that restores degeneracy.

The QSHX phase exhibits circular dichroism, like monolayer H-MoS2 (Refs. 33, 34): the optical

absorption of a photon whose wave vector lies in the yz plane (Fig. 4d),A, depends on the circular

polarization of the photon itself, σ+ or σ−. Figure 4e shows the k-resolved degree of optical
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Figure 5: Phase diagram vs strain and temperature. a, Phase diagram in the temperature

– biaxial strain space. Strain is mapped into band inversion, −δ, as illustrated by the insets (in

the sketches ∆ = 0). QSHX labels the topological excitonic insulator (predicted at zero strain),

QSHX-FE the ferroelectric topological excitonic phase, and X-FE the topologically trivial, ferro-

electric excitonic phase. b, Energy gap vs temperature along selected cuts in the phase diagram

(violet and blue dashed lines in panel a), corresponding respectively to −δ = 100 meV (violet

curve) and −δ = 250 meV (blue curve). The QSHX (-FE) gap is larger (smaller) than the QSH

gap at high temperature due to the lack of interference (destructive interference) between excitonic

and topological orders. c, Permanent electric dipole along x and z direction vs band inversion at

zero temperature.
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polarization33,

η(k) =
A(σ+)−A(σ−)

A(σ+) +A(σ−)
, (3)

evaluated for the optical transition from the highest valence to the lowest conduction band, whose

excitation energy, Ecλ(k) − Evλ(k), is shown in Fig. 4c. Remarkably, as η(k) circles around the

semimetal Fermi surface, it modulates from its lower to its upper bound, respectively −1 (blue

color in Fig. 4e) and +1 (red colour). These limit values are effectively optical selection rules

coupling orbital and spin degrees of freedom, like in the case of monolayer H-MoS2. On the

contrary, in the QSH ground state η(k) = 0 at each k point, since the microscopic transverse

currents, which are responsible of the net angular momentum, exactly cancel out due to Kramers

degeneracy35. We expect the dichroic signal to survive to final-state interactions, not included in

our calculation (Methods), and hence disclose the intrinsic chirality of the QSHX ground state.

Excitonic phases and ferroelectricity The application of biaxial strain to T ′-MoS2 is a practical

handle to tune the band inversion2 and hence the energy scales ruling the ground state, as shown in

Fig. 5a. Excitonic correlations tend to destroy topological order as the band overlap is suppressed,

since ∆SO decreases while ∆X increases. Such balance eventually leads to a topologically trivial

excitonic insulator (region in yellow colour, X-FE), after crossing a phase allowing for destructive

interference between ∆SO and ∆X (cyan colour, QSHX-FE). This tiny intermediate region, located

around the value of 180 meV, is broadened by temperature up to the frontier with the QSH phase.

The topological character of each phase is made evident by the cuts of the phase diagram along the

temperature axis (violet and blue dashed lines in Fig. 5a) displayed in Fig. 5b. Starting from the

13



QSH phase and lowering the temperature, the gap increases when entering the QSHX phase (blue

curve) but decreases while crossing the QSHX-FE region (violet curve), until the gap closes and

opens again in the, now topologically trivial, X-FE phase (cf. Supplementary Note 1).

Both QSHX-FE and X-FE phases totally distort the pristine C2h symmetry by breaking the

screw axis symmetry along y (Supplementary Figure 4), in addition to inversion. This is related

to the macroscopic condensation of the exciton electric dipole in the xz plane, which makes the

system ferroelectric19. Contrary to usual ferroelectrics, like BaTiO3, here the permanent electric

dipole, P, is not due to the displacement of anions and cations but to the modulation of the elec-

tronic charge density associated with the exciton polarization (Fig. 5c). This may open fascinating

new routes, like the realization of ultrafast switches between conductive and insulating (ferroelec-

tric) beahvior, locally controllable by strain or screening, or the exploration of exotic electronic

collective modes19, coherently radiating in the THz range.

In conclusion, we have demonstrated that a paradigmatic two-dimensional topological in-

sulator is also an excitonic insulator, by combining calculations from first principles with a self-

consistent mean-field model. We expect our results to be relevant to other T ′ polytypes, including

those that are semimetal according to MBPT, like WTe2, which are harder to simulate in view of

the enhanced screening of e − h interactions. In particular, WTe2 owns the record temperature of

100 K for the QSH effect3 and exhibits unexpected but intriguing properties that might be related

to the excitonic insulator, like ferroelectricity20 and gate-induced superconductivity24, 36 in close
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proximity to the insulating phase.

Methods

Computational details of many-body perturbation theory from first principles. The ground-

state structure and Kohn-Sham states were calculated for a single layer of T ′-MoS2 by using a

DFT approach, as implemented in the Quantum ESPRESSO package37. The generalized gradient

approximation (GGA) PBE parametrization38 was adopted together with plane wave basis set and

norm-conserving pseudopotentials to model the electron-ion interaction. Fully relativistic pseu-

dopotentials treating the sp semicore states of the transition metal atoms as valence electrons were

employed. The kinetic energy cutoff for the wave functions was set to 90 Ry. The Brillouin zone

was sampled by using a 16× 16× 1 k-point grid. The supercell size perpendicular to the T ′-MoS2

layer was set to az = 15.98 Å and checked to be large enough to avoid spurious interactions with

its replica.

The equilibrium atomic lattice parameters were obtained by performing a full relaxation of the cell

and atomic positions. The obtained equilibrium lattice parameters, ax = 5.74 Å, ay = 3.19 Å, as

well as the Kohn-Sham electronic gap were in very good agreement with previous literature2.

Many-body perturbation theory4 calculations were performed using the Yambo code39, 40. Many-

body corrections to the Kohn-Sham eigenvalues were calculated within the G0W0 approxima-

tion to the self-energy operator, where the dynamic dielectric function was obtained within the

plasmon-pole approximation41. The spectrum of excited states was then computed by solving the
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Bethe-Salpeter equation (BSE). The static screening in the direct term was calculated within the

random-phase approximation with inclusion of local field effects; the Tamm-Dancoff approxima-

tion for the BSE Hamiltonian was employed after having verified that the correction introduced

by coupling the resonant and antiresonant part was negligible. Converged excitation energies were

obtained considering respectively 2 valence and 2 conduction bands in the BSE matrix. For the

calculations of the GW band structure and the Bethe-Salpeter matrix, the Brillouin zone was sam-

pled with a 70× 35× 1 k-point grid. A kinetic energy cutoff of 60 Ry was used for the evaluation

of the exchange part of the self energy and 10 Ry for the screening matrix size. 248 unoccupied

bands were used to build the polarizability and integrate the self-energy. The Coulomb interac-

tion was truncated42 in the layer-normal direction to avoid spurious interactions with the image

systems. Note that the GW gap obtained in this work (0.26 eV) is similar to the value reported

in Ref. 43 calculated at HSE06 level (0.23 eV). A smaller value of the G0W0 gap (0.08 eV) is

instead reported in Ref. 2. The observed discrepancy can be probably explained by the use of a

non-truncated Coulomb potential in that work. The approach used in the GW and BSE calculations

takes into account the full spinorial nature of the electronic Kohn-Sham states, providing superior

accuracy than perturbative treatments of spin-orbit coupling.

Two-band model and self-consistent mean-field theory. The effective-mass Hamiltonian, Ĥ(k) =

ĤQSH(k) + ĤX(k), acts on four-component vectors, (u↑(k), v↑(k), u↓(k), v↓(k)), with uσ(k) and

vσ(k) being the spin- and k-resolved envelope functions44 of the py and dyz Bloch states at Γ,

respectively, and σ =↑, ↓. The vector normalization is such that
∑

σ(|uσ(k)|2 + |vσ(k)|2) = 1.
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QSH Hamiltonian. The non-interacting term of Eq. (1), ĤQSH, is modelled after Ref. 2 to provide

the bands of the QSH insulator—renormalized within the GW approximation—by accounting for

the spin-orbit interaction. It complies with the C2h point symmetry group, which includes the

inversion, Î = −τ̂z ⊗ Îσ, and the two-fold screw axis rotation along y, Ĉ2y = i τ̂z ⊗ σ̂y. The band

dispersions are εp(k) = −δ − ~2k2
x/(2mpx) − ~2k2

y/(2mpy) and εd(k) = δ + ~2k2
x/(2mdx) +

~2k2
y/(2mdy), with −δ being the band inversion. We optimize the matching with first-principles

GW bands by choosing δ = −250 meV, mpx/me = 0.6, mpy/me = 0.31, mdx/me = 2.48,

mdy/me = 0.5, v1 = 1.5·1015 Å/s, v2 = 1.3·1015 Å/s (me is the free electron mass).

Excitonic hybridization. The mean-field excitonic Hamiltonian, ĤX(k), in principle accounts for

eight independent order parameters, i.e., the four complex hybridization terms coupling all possible

pairs of conduction- and valence-band spin projections. The form (2) complies with the constrain

that ĤX is even in k, ĤX(k) = ĤX(−k), and invariant under time reversal, Θ̂ĤX(−k) = ĤX(k)Θ̂,

where Θ̂ = i Îτ ⊗ σ̂yK̂ and K̂ are the time-reversal and the complex conjugation operator, re-

spectively. The excitonic hybridization terms are derived from the interband Coulomb interaction

through the usual mean-field decoupling procedure, as

Re{∆X(k)} = −
∑

k′

W (k− k′)
〈
p†k′↑dk′↑

〉
, (4)

and

Im{∆X(k)} = −
∑

k′

W (k− k′)
〈
p†k′↑dk′↓

〉
, (5)

where the Fermi field operators pkσ and dkσ destroy electrons occupying p and d Bloch states,

respectively, and the symbol 〈. . .〉 stands for the quantum statistical average [the expressions (4)

17



and (5) do not change as one reverses the spins of p†kσ and dkσ′ simultaneously]. Whereas quantum

and thermal fluctuations are believed to disrupt long range order in low dimensions, here we expect

that excitonic correlations are stabilized by the long range of the Coulomb interaction, as verified

in the one-dimensional case through extensive quantum Monte Carlo simulations25.

Dressed interaction. The key quantity above is the q-resolved screened Coulomb interaction45,

W (q) = V0(q)/(1 + 2πα2D |q|), which we fit to the one obtained from first principles within

the random phase approximation (Supplementary Figure 1). The long-wavelength term, V0(q) ∼

1/ |q|, is unscreened in two dimensions45 and hence the dominant contribution to e − h attrac-

tion. Since the prefactor of 1/ |q| is determined by the dimensions of the supercell used in the

first-principles calculation42, i.e., ax = 5.743 Å, ay = 3.191 Å, az = 15.98 Å, the only free pa-

rameter is the two-dimensional polarizability45, α2D. We adjust α2D to match effective-mass and

first-principles exciton binding energies, with α2D = 10.75 corresponding to the three-dimensional

dielectric constant of 9.5 for the stack of T ′-MoS2 monolayers—the actual bulk of the super-

cell calculation45. This latter figure reasonably compares with the values—between 10 and 20—

assumed by the first-principles dielectric function in the q-range of 0.02÷ 0.05 [units of (2π)/ax].

Eigenvectors. The eigenvectors of Ĥ(k) are the conduction and valence band states of the corre-

lated insulator. The first of the two valence bands, (v, λ = +), has as wave function envelopes

uσ(k, v,+) = u0/
√

2 and vσ(k, v,+) = iv0 exp(−iϕ)/
√

2, with u0 and v0 positive numbers

whose magnitudes are given by u2
0 = 1/2[1−ξ(k)/Ek+] and u2

0 +v2
0 = 1; the phase is provided by

iu0v0 exp(iϕ) = (∆SO + ∆X)/2Ek+. The second band, (v, λ = −), has uσ(k, v,−) = −σu′0/
√

2

18



and vσ(k, v,−) = −σiv′0 exp(iϕ′)/
√

2 (the spin index takes the values σ = ± when occurring

in the body of a formula), with u′20 = 1/2[1 − ξ(k)/Ek−], u′20 + v′20 = 1, and iu′0v
′
0 exp(iϕ′) =

(∆SO −∆X)/2Ek−. The envelopes of conduction bands (c, λ) have similar expressions, which are

obtained from uσ(k, v, λ) and vσ(k, v, λ) by swapping u0 for v0 (u′0 for v′0) in the formulae and

simultaneously adding π to ϕ (ϕ′).

Self-consistent equations. The many-body ground state, |Ψ0〉, is the Slater determinant with all

valence band states filled, i.e., |Ψ0〉 =
∏

k γ
†
k,v,+γ

†
k,v,− |0〉, where |0〉 is the vacuum and γk,α,λ =∑

σ uσ(k, α, λ) pkσ + vσ(k, α, λ) dkσ is the Fermi operator destroying an electron occupying the

eigenstate of Ĥ(k) of wave vector k and band index (α, λ), with α = c, v. The knowledge of

many-body states, together with Eqs. (4) and (5), allows us to write explicitly the self-consistent

equations for ∆X,

Re{∆X(k)} =
1

4

∑
k′

W (k− k′)
[

Re{∆X(k′)}+ ~v2k
′
y

Ek′+

[fF (Ev+(k′))− fF (Ec+(k′))]

+
Re{∆X(k′)} − ~v2k

′
y

Ek′−
[fF (Ev−(k′))− fF (Ec−(k′))]

]
, (6)

and

Im{∆X(k)} =
1

4

∑
k′

W (k− k′)
[

Im{∆X(k′)} − ~v1k
′
x

Ek′+

[fF (Ev+(k′))− fF (Ec+(k′))]

+
Im{∆X(k′)}+ ~v1k

′
x

Ek′−
[fF (Ev−(k′))− fF (Ec−(k′))]

]
. (7)

Here fF (E) = (exp β(E − µ) + 1)−1 is the Fermi distribution function, β = 1/kBT is inversely

proportional to the temperature T , kB is Boltzmann’s constant, and µ is the equilibrium chemical

potential, which we place at midgap neglecting small deviations expected at finite temperature.
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Note that the divergence of W at long wavelength is harmless since the interaction is integrated

over the Brillouin zone. Equations (6) and (7), which are coupled together essentially through the

denominators Ek′λ, allow for the trivial solution ∆X(k) ≡ 0 in the QSH phase. The non trivial

solution is obtained numerically through recursion, using the k-resolved exciton wave function as

a first-iteration seed25, which allows for quick and robust convergence.

Topological invariant Z2. We derive the topological invariant Z2 by applying the test originally

developed by Kane and Mele for graphene46 to Ĥ(k). This relies on the evaluation of the overlap,

P (k), between the single-particle state (k, v, λ) and the time reversed of (k, v,−λ),

P (k) = 〈k, v, λ| Θ̂ |k, v,−λ〉sp = u0u
′
0 − v0v

′
0e
i(ϕ−ϕ′), (8)

with 〈...〉sp being the scalar product between four-component vectors. In Supplementary Note 1 we

assess the number of pairs of zeroes of P (k) occurring at k∗ and −k∗, which at once characterizes

the topology of the many-body state.

Circular dichroism and permanent electric dipole. The degree of optical polarization, η(k), is

defined by Eq. (3) through the optical absorption,A(σ±), of a photon having circular polarization,

σ+ or σ−, and wave vector lying in the yz plane. We evaluate A(σ±) through Fermi golden rule,

A(σ±) =
2π

~
∑
λ

∣∣∣〈Ψ0| D(σ±)γ†kcλγkvλ |Ψ0〉
∣∣∣2 δ(~ω − Ec(k) + Ev(k)) , (9)

by selecting the mimimum e − h pair excitation energy available at a given point in k space,

Ec(k) − Ev(k), i.e., the photon energy ~ω depends on k, as shown in Fig. 4c. The light-matter

20



interaction within the dipole approximation,

D(σ±) = e (ExxΓ ± iEzzΓ)
∑
kσ

(
p†kσdkσ + d†kσpkσ

)
, (10)

depends on the (real) coordinate interband matrix elements evaluated at Γ, xΓ and zΓ, which we

extract from first principles (xΓ = 1.94 Å, zΓ = 0.308 Å, yΓ = 0 due to symmetry). Here

Ex = Ez = E is the electric field, and the sign ± picks up the helicity of the field that is circularly

polarized in the xz plane. The permanent electric dipole, 〈P〉, is the equilibrium average of the

periodic part of the interband dipole operator over the many-body ground state19,

〈P〉 =
e (xΓi + zΓk)

NxaxNyay

∑
kσ

〈
p†kσdkσ + d†kσpkσ

〉
, (11)

where NxNy is the number of unit cells used in the simulation.
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