Fog computing infrastructures must support increasingly complex applications where a large number of sensors send data to intermediate fog nodes for processing. As the load in such applications (as in the case of a smart cities scenario) is subject to significant fluctuations both over time and space, load balancing is a fundamental task. In this paper we study a fully distributed algorithm for load balancing based on random probing of the neighbors' status. A qualifying point of our study is considering the impact of delay during the probe phase and analyzing the impact of stale load information. We propose a theoretical model for the loss of correlation between actual load on a node and stale information arriving to the neighbors. Furthermore, we analyze through simulation the performance of the proposed algorithm considering a wide set of parameters and comparing it with an approach from the literature based on random walks. Our analysis points out under which conditions the proposed algorithm can outperform the alternatives.
Randomized Load Balancing under Loosely Correlated State Information in Fog Computing / Beraldi, R.; Canali, C.; Lancellotti, R.; Mattia, G. P.. - (2020), pp. 123-127. (Intervento presentato al convegno 23rd ACM International Conference on Modelling, Analysis, and Simulation of Wireless and Mobile Systems, MSWiM 2020 tenutosi a esp nel 2020) [10.1145/3416010.3423244].
Randomized Load Balancing under Loosely Correlated State Information in Fog Computing
Canali C.;Lancellotti R.;
2020
Abstract
Fog computing infrastructures must support increasingly complex applications where a large number of sensors send data to intermediate fog nodes for processing. As the load in such applications (as in the case of a smart cities scenario) is subject to significant fluctuations both over time and space, load balancing is a fundamental task. In this paper we study a fully distributed algorithm for load balancing based on random probing of the neighbors' status. A qualifying point of our study is considering the impact of delay during the probe phase and analyzing the impact of stale load information. We propose a theoretical model for the loss of correlation between actual load on a node and stale information arriving to the neighbors. Furthermore, we analyze through simulation the performance of the proposed algorithm considering a wide set of parameters and comparing it with an approach from the literature based on random walks. Our analysis points out under which conditions the proposed algorithm can outperform the alternatives.File | Dimensione | Formato | |
---|---|---|---|
main.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
601.12 kB
Formato
Adobe PDF
|
601.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
mswim2020.pdf
Open access
Descrizione: Slides
Tipologia:
Altro
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris