Record-level matching rules are chains of similarity join pred-icates on multiple attributes employed to join records that refer to the same real-world object when an explicit foreign key is not available on the data sets at hand. They are widely employed by data scientists and practitioners that work with data lakes, open data, and data in the wild. In this work we present a novel technique that allows to efficiently exe-cute record-level matching rules on parallel and distributed systems and demonstrate its efficiency on a real-wold data set.

Scaling up Record-level Matching Rules / Gagliardelli, L.; Simonini, G.; Bergamaschi, S.. - 2646:(2020), pp. 12-23. (Intervento presentato al convegno 28th Italian Symposium on Advanced Database Systems, SEBD 2020 tenutosi a ita nel 2020).

Scaling up Record-level Matching Rules

Gagliardelli L.
Writing – Original Draft Preparation
;
Simonini G.
Writing – Original Draft Preparation
;
Bergamaschi S.
Writing – Original Draft Preparation
2020

Abstract

Record-level matching rules are chains of similarity join pred-icates on multiple attributes employed to join records that refer to the same real-world object when an explicit foreign key is not available on the data sets at hand. They are widely employed by data scientists and practitioners that work with data lakes, open data, and data in the wild. In this work we present a novel technique that allows to efficiently exe-cute record-level matching rules on parallel and distributed systems and demonstrate its efficiency on a real-wold data set.
2020
28th Italian Symposium on Advanced Database Systems, SEBD 2020
ita
2020
2646
12
23
Gagliardelli, L.; Simonini, G.; Bergamaschi, S.
Scaling up Record-level Matching Rules / Gagliardelli, L.; Simonini, G.; Bergamaschi, S.. - 2646:(2020), pp. 12-23. (Intervento presentato al convegno 28th Italian Symposium on Advanced Database Systems, SEBD 2020 tenutosi a ita nel 2020).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1222883
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact