We present a multiscale modeling platform that exploits ab-initio calculation results and a material-related description of the most relevant defect-related phenomena in dieledtrics (charge trapping and transport, degradation and atomic species motion) to interpret and understand the electrical characteristics of OxRAM memory devices for non-volatile memories and neuromorphic applications. Simulation results provide a deep and quantitative understanding of the factors controlling device operation. The proposed multiscale modeling platform represents a powerful tool for investigating material properties and optimizing device performances and reliability.

A multiscale modeling approach for the simulation of OxRRAM devices / Padovani, A.; Larcher, L.; Woo, J.; Hwang, H.. - 2017-:(2017), pp. 1-8. (Intervento presentato al convegno 17th Non-Volatile Memory Technology Symposium, NVMTS 2017 tenutosi a RWTH Aachen University, deu nel 2017) [10.1109/NVMTS.2017.8171306].

A multiscale modeling approach for the simulation of OxRRAM devices

Padovani A.;Larcher L.;
2017

Abstract

We present a multiscale modeling platform that exploits ab-initio calculation results and a material-related description of the most relevant defect-related phenomena in dieledtrics (charge trapping and transport, degradation and atomic species motion) to interpret and understand the electrical characteristics of OxRAM memory devices for non-volatile memories and neuromorphic applications. Simulation results provide a deep and quantitative understanding of the factors controlling device operation. The proposed multiscale modeling platform represents a powerful tool for investigating material properties and optimizing device performances and reliability.
2017
17th Non-Volatile Memory Technology Symposium, NVMTS 2017
RWTH Aachen University, deu
2017
2017-
1
8
Padovani, A.; Larcher, L.; Woo, J.; Hwang, H.
A multiscale modeling approach for the simulation of OxRRAM devices / Padovani, A.; Larcher, L.; Woo, J.; Hwang, H.. - 2017-:(2017), pp. 1-8. (Intervento presentato al convegno 17th Non-Volatile Memory Technology Symposium, NVMTS 2017 tenutosi a RWTH Aachen University, deu nel 2017) [10.1109/NVMTS.2017.8171306].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1222831
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact