The paper overviews the project—European Multiple MOOC Aggre-gator, EMMA for short, and its learning analytics system with the initial results. xAPI statements are used for designing learning analytics dashboards in order to provide instant feedback for learners and instructors. The paper presents dashboard visualizations and discusses the possibilities of use of EMMA learning analytics dashboard views for sensemaking and reflection of the MOOCs and MOOC experience. It investigates some of the MOOCs in EMMA platform as cases and analyzes the learning designs of those MOOCs. Recommendations of changes to learning designs based on learning analytics data are provided.
Learning analytics in MOOCs: EMMA case / Eradze, M.; Tammets, K.. - 2(2017), pp. 193-204.
Data di pubblicazione: | 2017 |
Titolo: | Learning analytics in MOOCs: EMMA case |
Autore/i: | Eradze, M.; Tammets, K. |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/978-3-319-55477-8_18 |
Codice identificativo Scopus: | 2-s2.0-85045253072 |
Serie: | STUDIES IN CLASSIFICATION, DATA ANALYSIS, AND KNOWLEDGE ORGANIZATION |
Titolo del libro: | Studies in Classification, Data Analysis, and Knowledge Organization |
ISBN: | 978-3-319-55476-1 978-3-319-55477-8 |
Editore: | Springer Berlin Heidelberg |
Citazione: | Learning analytics in MOOCs: EMMA case / Eradze, M.; Tammets, K.. - 2(2017), pp. 193-204. |
Tipologia | Capitolo/Saggio |
File in questo prodotto:

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris