The effect of subchronic co-administration of ritanserin (1.5 mg/kg, i.p., twice a day) and haloperidol (1 mg/kg, i.p., twice a day) on rat vacuous chewing movements and on tyrosine hydroxylase-immunostaining was investigated. Ritanserin significantly reduced rat vacuous chewing movements observed following 2, 3 and 4 weeks of haloperidol administration and after 5 days of haloperidol withdrawal. Furthermore, ritanserin prevented the reduction of striatal tyrosine hydroxylase-immunostaining and the shrinkage of nigral dopaminergic cell bodies induced by haloperidol. The present results indicate that ritanserin may possess protective properties on both dopaminergic nigro-striatal neuron alterations and vacuous chewing movements induced by haloperidol, and provide further evidence indicating a possible association between these two haloperidol-induced effects. © 2003 Elsevier B.V. All rights reserved.
Ritanserin counteracts both rat vacuous chewing movements and nigro-striatal tyrosine hydroxylase-immunostaining alterations induced by haloperidol / Marchese, G.; Bartholini, F.; Ruiu, S.; Casti, P.; Casu, G. L.; Pani, L.. - In: EUROPEAN JOURNAL OF PHARMACOLOGY. - ISSN 0014-2999. - 483:1(2004), pp. 65-69. [10.1016/j.ejphar.2003.10.005]
Ritanserin counteracts both rat vacuous chewing movements and nigro-striatal tyrosine hydroxylase-immunostaining alterations induced by haloperidol
Pani L.
2004
Abstract
The effect of subchronic co-administration of ritanserin (1.5 mg/kg, i.p., twice a day) and haloperidol (1 mg/kg, i.p., twice a day) on rat vacuous chewing movements and on tyrosine hydroxylase-immunostaining was investigated. Ritanserin significantly reduced rat vacuous chewing movements observed following 2, 3 and 4 weeks of haloperidol administration and after 5 days of haloperidol withdrawal. Furthermore, ritanserin prevented the reduction of striatal tyrosine hydroxylase-immunostaining and the shrinkage of nigral dopaminergic cell bodies induced by haloperidol. The present results indicate that ritanserin may possess protective properties on both dopaminergic nigro-striatal neuron alterations and vacuous chewing movements induced by haloperidol, and provide further evidence indicating a possible association between these two haloperidol-induced effects. © 2003 Elsevier B.V. All rights reserved.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris