The recent growth in the number of satellite images fosters the development of effective deep-learning techniques for Remote Sensing (RS). However, their full potential is untapped due to the lack of large annotated datasets. Such a problem is usually countered by fine-tuning a feature extractor that is previously trained on the ImageNet dataset. Unfortunately, the domain of natural images differs from the RS one, which hinders the final performance. In this work, we propose to learn meaningful representations from satellite imagery, leveraging its high-dimensionality spectral bands to reconstruct the visible colors. We conduct experiments on land cover classification (BigEarthNet) and West Nile Virus detection, showing that colorization is a solid pretext task for training a feature extractor. Furthermore, we qualitatively observe that guesses based on natural images and colorization rely on different parts of the input. This paves the way to an ensemble model that eventually outperforms both the above-mentioned techniques.
The color out of space: learning self-supervised representations for Earth Observation imagery / Vincenzi, Stefano; Porrello, Angelo; Buzzega, Pietro; Cipriano, Marco; Fronte, Pietro; Cuccu, Roberto; Ippoliti, Carla; Conte, Annamaria; Calderara, Simone. - (2021), pp. 3034-3041. (Intervento presentato al convegno 25th International Conference on Pattern Recognition, ICPR 2020 tenutosi a Milan, Italy nel 10-15 January 2021) [10.1109/ICPR48806.2021.9413112].
The color out of space: learning self-supervised representations for Earth Observation imagery
Stefano Vincenzi;Angelo Porrello;Pietro Buzzega;Marco Cipriano;Simone Calderara
2021
Abstract
The recent growth in the number of satellite images fosters the development of effective deep-learning techniques for Remote Sensing (RS). However, their full potential is untapped due to the lack of large annotated datasets. Such a problem is usually countered by fine-tuning a feature extractor that is previously trained on the ImageNet dataset. Unfortunately, the domain of natural images differs from the RS one, which hinders the final performance. In this work, we propose to learn meaningful representations from satellite imagery, leveraging its high-dimensionality spectral bands to reconstruct the visible colors. We conduct experiments on land cover classification (BigEarthNet) and West Nile Virus detection, showing that colorization is a solid pretext task for training a feature extractor. Furthermore, we qualitatively observe that guesses based on natural images and colorization rely on different parts of the input. This paves the way to an ensemble model that eventually outperforms both the above-mentioned techniques.File | Dimensione | Formato | |
---|---|---|---|
the_color_out_main_paper.pdf
Open access
Descrizione: Articolo principale
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
1.62 MB
Formato
Adobe PDF
|
1.62 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris