Cable-suspended robots may move beyond their static workspace by keeping all cables under tension, thanks to end-effector inertia forces. This may be used to extend the robot capabilities, by choosing suitable dynamical trajectories. In this paper, we consider three-dimensional (3D) elliptical trajectories of a point-mass end effector suspended by three cables from a base of generic geometry. Elliptical trajectories are the most general type of spatial sinusoidal motions. We find a range of admissible frequencies for which said trajectories are feasible; we also show that there is a special frequency, which allows the robot to have arbitrarily large oscillations. The feasibility of these trajectories is verified via algebraic conditions that can be quickly verified, thus being compatible with real-time applications. By generalizing previous studies, we also study the possibility to change the frequency of oscillation: this allows the velocity at which a given ellipse is tracked to be varied, thus providing more latitude in the trajectory definition. We finally study transition trajectories to move the robot from an initial state of rest (within the static workspace) to the elliptical trajectory (and vice versa) or to connect two identical ellipses having different centers.
Dynamically feasible periodic trajectories for generic spatial three-degree-of-freedom cable-suspended parallel robots / Mottola, Giovanni; Gosselin, Clément; Carricato, Marco. - In: JOURNAL OF MECHANISMS AND ROBOTICS. - ISSN 1942-4302. - 10:3(2018), pp. 1-10. [10.1115/1.4039499]
Dynamically feasible periodic trajectories for generic spatial three-degree-of-freedom cable-suspended parallel robots
MOTTOLA, GIOVANNI;
2018
Abstract
Cable-suspended robots may move beyond their static workspace by keeping all cables under tension, thanks to end-effector inertia forces. This may be used to extend the robot capabilities, by choosing suitable dynamical trajectories. In this paper, we consider three-dimensional (3D) elliptical trajectories of a point-mass end effector suspended by three cables from a base of generic geometry. Elliptical trajectories are the most general type of spatial sinusoidal motions. We find a range of admissible frequencies for which said trajectories are feasible; we also show that there is a special frequency, which allows the robot to have arbitrarily large oscillations. The feasibility of these trajectories is verified via algebraic conditions that can be quickly verified, thus being compatible with real-time applications. By generalizing previous studies, we also study the possibility to change the frequency of oscillation: this allows the velocity at which a given ellipse is tracked to be varied, thus providing more latitude in the trajectory definition. We finally study transition trajectories to move the robot from an initial state of rest (within the static workspace) to the elliptical trajectory (and vice versa) or to connect two identical ellipses having different centers.File | Dimensione | Formato | |
---|---|---|---|
Mottola-Gosselin-Carricato_JMR2018_published.pdf
Accesso riservato
Dimensione
2.18 MB
Formato
Adobe PDF
|
2.18 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
PP Dynamically feasible periodic trajectories.pdf
Accesso riservato
Dimensione
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris