This paper addresses a real-life personnel scheduling problem in the context of Covid19 pandemic, arising in a large Italian pharmaceutical distribution warehouse. In this case study, the challenge is to determine a schedule that attempts to meet the contractual working time of the employees, considering the fact that they must be divided into mutually exclusive groups to reduce the risk of contagion. To solve the problem, we propose a mixed integer linear programming formulation (MILP). The solution obtained indicates that optimal schedule attained by our model is better than the one generated by the company. In addition, we performed tests on random instances of larger size to evaluate the scalability of the formulation. In most cases, the results found using an open-source MILP solver suggest that high quality solutions can be achieved within an acceptable CPU time. We also project that our findings can be of general interest for other personnel scheduling problems, especially during emergency scenarios such as those related to Covid-19 pandemic.
Personnel scheduling during Covid-19 pandemic / Zucchi, Giorgio; Iori, Manuel; Subramanian, Anand. - In: OPTIMIZATION LETTERS. - ISSN 1862-4472. - (2020), pp. 1-12.
Data di pubblicazione: | 2020 |
Data di prima pubblicazione: | 4-ott-2020 |
Titolo: | Personnel scheduling during Covid-19 pandemic |
Autore/i: | Zucchi, Giorgio; Iori, Manuel; Subramanian, Anand |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s11590-020-01648-2 |
Rivista: | |
Pagina iniziale: | 1 |
Pagina finale: | 12 |
Codice identificativo ISI: | WOS:000575036800001 |
Codice identificativo Scopus: | 2-s2.0-85092059556 |
Codice identificativo Pubmed: | 33042287 |
Citazione: | Personnel scheduling during Covid-19 pandemic / Zucchi, Giorgio; Iori, Manuel; Subramanian, Anand. - In: OPTIMIZATION LETTERS. - ISSN 1862-4472. - (2020), pp. 1-12. |
Tipologia | Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
main01.pdf | Versione pre print | Pre-print dell'autore (bozza pre referaggio) | Open Access Visualizza/Apri |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris