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Abstract

This paper addresses a real-life personnel scheduling problem in the
context of Covid-19 pandemic, arising in a large Italian pharmaceutical
distribution warehouse. In this case study, the challenge is to determine
a schedule that attempts to meet the contractual working time of the
employees, considering the fact that they must be divided into mutually
exclusive groups to reduce the risk of contagion. To solve the problem,
we propose a mixed integer linear programming formulation (MILP). The
solution obtained indicates that optimal schedule attained by our model
is better than the one generated by the company. In addition, we per-
formed tests on random instances of larger size to evaluate the scalability
of the formulation. In most cases, the results found using an open-source
MILP solver suggest that high quality solutions can be achieved within
an acceptable CPU time. We also project that our findings can be of gen-
eral interest for other personnel scheduling problems, especially during
emergency scenarios such as those related to Covid-19 pandemic.

Keywords— Personnel scheduling, Covid-19, risk, integer programming

1 Introduction

Personnel scheduling problems traditionally consist of optimizing work timeta-
bles, i.e., determining the appropriate times and shifts the employees of a com-
pany should work. Several objectives can be considered, such as minimizing
duty costs, maximizing productivity, or minimizing the number of employees.
The solutions generated must meet different criteria, for example, maximum
number of working days, maximum amount of working hours, and so on. Due
to the recent Covid-19 pandemic, we introduce a novel and emerging aspect:
the risk of contagion among the workers. Covid-19 is now widely known to be
highly contagious, and the interested reader may refer to, e.g., [9, 11] and [16]
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for further information regarding the transmission of the virus and the source
of the disease, respectively.

While there is a rich body of literature on how governments can avoid the
spread of pandemic diseases [e.g., 1, 7], the same does not happen when it
comes to investigating optimized personnel scheduling policies that take into
account the risk of disease spreading in specific environments. This is the case
of companies that must remain open to provide essential services during a pos-
sible quarantine period. In this work, we attempt to start filling this gap by
studying and solving a real-world personnel scheduling problem during Covid-
19 pandemic, arising in a large Italian pharmaceutical distribution warehouse
operated by Coopservice [3]. It consists of a large service company operating in
several fields such as transportation, logistics, cleaning and security services.

There is a vast literature on personnel scheduling and we refer to [5, 6, 17]
for detailed surveys and to [2] for models and complexity results. According
to the classification scheme presented in [5], we can categorize the scheduling
made by the company before and after Covid-19 pandemic as demand-based and
shift-based, respectively. The latter is extensively adopted in nurse scheduling
studies [e.g., 4, 14]. In particular, a variant of the problem was tackled in [18],
in which nurses with the same skills, or that are married to each other and with
children, were not allowed to work together during the same shift. This situa-
tion somewhat resembles the one found in our problem (see Section 2), where
an employee originally assigned to a sector can no longer be reassigned to an-
other one during the workday, as it often happened before the pandemic. More
recently, the study described in [15] proposed and solved a nurse rostering prob-
lem arising in Covid-19 pandemic, where the author considered an emergency
scenario by allowing nurses to work in multiple shifts during a workday. The
objective was to decrease the occurrences of shifts with an insufficient number
of nurses, and to balance the schedules by minimizing the working hours of the
nurses.

To solve the problem introduced in this paper, we propose a mathematical
formulation based on mixed integer linear programming (MILP). The results
obtained show that our optimized solution is capable of improving the manual
one produced by the company by 37.3%, while keeping the same number of
workers. In addition, we demonstrate that the model is capable of obtaining, on
average, high quality solutions on larger instances generated at random within
an acceptable CPU time.

The remainder of the paper is organized as follows. Section 2 formally intro-
duces our personnel scheduling problem. Section 3 shows the solutions adopted
by the company before and after Covid-19 pandemic, as well as the performance
measures used to evaluate the solutions. Section 4 describes the proposed mathe-
matical model. Section 5 contains the results of the computational experiments.
Finally, Section 6 presents the concluding remarks.
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2 Problem description

The activities that Coopservice need to perform are to receive, organize and
distribute pharmaceutical products to hospitals. The company manages large
regional warehouses in Italy, where goods are received, stored, picked-up, and fi-
nally delivered to the hospitals, according to their demand. Therefore, Coopser-
vice deals with the totality of the pharmaceutical supply chain: from the in-
bound activity to the last-mile delivery [10].

In this work, we study the case of a regional warehouse located in Tuscany,
one of the largest regions in Italy. The warehouse is composed of two floors:
the top floor stores all pharmacological items (e.g., antiblastic, fridge drugs,
toxic and inflammable), whereas the ground floor the non-pharmacological ones
(food, paper, plastic, masks, gloves, syringes, etc.). Each floor has two working
sectors, thus leading to a total of four sectors. There are 23 employees working in
the warehouse. In the following, we use E and A to define the sets of employees
and sectors, respectively.

The arise of Covid-19 brought into light a new issue that affected the move-
ment of workers in the warehouse. Before the pandemic, all of them could move
from one sector to the other, when required, during the workday. This became
no longer possible during the pandemic period, meaning that each employee
e ∈ E should work in exactly one sector a ∈ A during the workday, with a
view of avoiding contagion. As a result, the company was forced to modify the
personnel scheduling policy by creating groups of employees that must always
work together, both in the same shift and in the same sector.

In our problem, we also consider a set of shifts S where the employees can
work. We denote by s = 1 and s = 2 the morning and afternoon shifts, respec-
tively, from Monday to Friday. Because of the emergency scenario, employees
must also work in sector a = 1 on Saturday morning, here referred to as shift
s = 3. Each shift s ∈ S has a maximum amount of weekly working hours for
each sector a ∈ A, represented by λsa.

To balance the activities, each group of employees alternate their shift every
week, i.e., if a group works on the morning shift during a week, in the next week
the same group will have to work on the afternoon shift. Moreover, for each
sector a ∈ A and each shift s ∈ S, we define by τsa the weekly minimum amount
of working hours imposed by the company to ensure the required productivity
level. In addition, each employee e ∈ E has a contractual amount of working
hours hmax

e per week. Finally, we define cea as a binary input parameter in-
dicating whether employee e ∈ E can work in sector a ∈ A (cea = 1) or not
(cea = 0). This corresponds to the skill matrix of employees.

Let W be the set of weeks. The aim of this work is to solve the personnel
scheduling problem for 2 consecutive weeks (i.e., W = {1, 2}), satisfying the new
shift regulation for the emergency period issued by the authorities. The objec-
tive of the problem is to minimize the sum of the deviations from the contractual
amount of working hours of each worker formally given by the absolute differ-
ence between the weekly working time in the solution and hmax

e . Both positive
and negative deviations imply in additional costs for the company (if negative,
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the missing hours need to be paid nevertheless to the worker, if positive, the
extra hours impose an extra cost).

Table 1 shows the schedule manually built by the company to solve the
problem for sector 1 before and after the pandemic. Note that the morning
shift starts at 07:00 and finishes at 12:00, while the afternoon shift starts at
12:00 and finishes at 20:00. For each employee e ∈ E, we report the sum of
weekly working hours

∑
he and the deviation ∆ew in each w ∈W with respect

to hmax
e . It can be seen that before the pandemic there was no deviation at all

(∆ew = 0 ∀e ∈ E,w ∈ W ), whereas the same did not occur after the pandemic
(where, e.g., employee 5 has a deviation of 10 working hours in week 2).

Table 1: Personnel scheduling for sector 1 before and after Covid-19 pandemic
Personnel scheduling for sector 1 before Covid-19 pandemic

Week 1
e 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 s = 3

∑
he hmax

e ∆e1

1 30 30 0
2 30 30 0
3 40 40 0
4 40 40 0
5 30 30 0
6 30 30 0

Week 2
e 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 s = 3

∑
he hmax

e ∆e2

1 30 30 0
2 30 30 0
3 40 40 0
4 40 40 0
5 30 30 0
6 30 30 0

Personnel scheduling for sector 1 after Covid-19 pandemic
Week 1

e 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 s = 3
∑
he hmax

e ∆e1

1 6 h 31 30 1
2 30 30 0
3 40 40 0
4 40 40 0
5 30 30 0
6 30 30 0

Week 2
e 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 s = 3

∑
he hmax

e ∆e2

1 30 30 0
2 30 30 0
3 6 h 36 40 4
4 6 h 36 40 4
5 40 30 10
6 40 30 10

3 Personnel scheduling in a normal scenario and
during Covid-19 pandemic

In this section, we analyze the schedules adopted by the company before and
after the pandemic. Table 2 reports the weekly value of ∆ew for each employee.
One can clearly observe that the schedule determined by the company in a
normal scenario successfully met the amount of contractual working hours for
all employees but 11, 18 and 21. The new schedule generated by the company
led, however, to many deviations, as highlighted in the bottom part of the table.

In addition to the evaluation of ∆ew, we also need to evaluate the contagion
risk. To this aim, Figure 1 depicts a network graph, before and after the pan-
demic, where the vertices denote the employees and the edges indicate whether
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Table 2: Weekly working hours before and after Covid-19 pandemic
Weekly working hours before Covid-19 pandemic

Sector 1 Sector 2 Sector 3 Sector 4
e ∆e1 ∆e2 e ∆e1 ∆e2 e ∆e1 ∆e2 e ∆e1 ∆e2

1 0 0 7 0 0 11 1 1 18 1 1
2 0 0 8 0 0 12 0 0 19 0 0
3 0 0 9 0 0 13 0 0 20 0 0
4 0 0 10 0 0 14 0 0 21 1 1
5 0 0 15 0 0 22 0 0
6 0 0 16 0 0 23 0 0

17 0 0
Weekly working hours after Covid-19 pandemic

Sector 1 Sector 2 Sector 3 Sector 4
e ∆e1 ∆e2 e ∆e1 ∆e2 e ∆e1 ∆e2 e ∆e1 ∆e2

1 1 0 7 10 0 11 1 4 18 6 1
2 0 0 8 0 10 12 0 0 19 0 5
3 0 4 9 0 10 13 5 0 20 5 0
4 0 4 10 0 10 14 5 0 21 4 1
5 0 10 15 5 0 22 5 0
6 0 10 16 0 5 23 0 5

17 0 0

a pair of employees worked together in the same shift and in the same sector (for
at least one hour). From this graph representation, we introduced a contagion
risk factor R to measure the risk of infection, based on the average vertex degree
of the graph. Let Gaw be a graph associated with each sector a ∈ A and each
week w ∈ W . Every graph has a vertex-set V (Gaw) and edge-set E(Gaw). For
each vertex u ∈ V (Gaw) we define Ω(u) as its corresponding degree (number of
first neighbors). The risk factor Raw for each sector a and for each week w is
thus formally defined as:

Raw =

∑
u∈V (Gaw) Ω(u)

|V (Gaw)|
. (1)

We can then determine the value of the risk factor Ra for each sector a as
follows:

Ra =

∑
w∈W Raw

|Raw|
. (2)

For example, when considering Sector 2, we can observe that the average
vertex degree (i.e., the risk factor R) before and after the pandemic were 3 and
1, respectively.

Table 3 shows the average values of R for each sector before and after the
pandemic. It can be seen that the new schedule visibly decreases the risk of
disease spreading, as the values of R are considerably smaller, when compared
to the previous situation.

Table 3: R values before and after Covid-19 pandemic in a company solution
Sector 1 Sector 2 Sector 3 Sector 4

Rbefore 3.7 3.0 5.7 5.0
Rafter 2.0 1.0 2.5 2.0
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Figure 1: Network of relationships between employees, the vertices represent the
employees and the edges indicate that they worked at least once at the same
time in the same sector

4 Proposed mathematical formulation

Let xwa
se be a binary variable assuming the value one if employee e ∈ E is

assigned to shift s ∈ S to work in sector a ∈ A in week w ∈ W , 0 otherwise.
In addition, let ywa

se be the amount of working hours spent in sector a ∈ A by
employee e ∈ E assigned to shift s ∈ S in week w ∈ W . Finally, the excess
and lack of working hours associated with employee e ∈ E in week w ∈ W are
defined by variables δ+

ew and δ−ew, respectively. The MILP formulation can be
written as follows.

min ∆:
∑
e∈E

∑
w∈W

δ−ew + δ+
ew (3)
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s.t.
∑
a∈A

∑
s∈{1,2}

xwa
se = 1 w ∈W, e ∈ E (4)

∑
s∈{1,2}

x1a
se =

∑
s∈{1,2}

x2a
se a ∈ A, e ∈ E (5)

∑
a∈A

∑
w∈W

xwa
se = 1 e ∈ E, s ∈ {1, 2} (6)

xwa
3e ≤ xwa

1e e ∈ E, a ∈ A,w ∈W (7)

xwa
3e = 0 w ∈W,a ∈ {2, 3, 4}, e ∈ E (8)

ywa
se ≤ λsaxwa

se w ∈W, e ∈ E, a ∈ A, s ∈ S (9)∑
e∈E

ywa
se ≥ τsa w ∈W,a ∈ A, s ∈ S (10)∑

a∈A

∑
s∈S

ywa
se + δ−ew − δ+

ew = hmax
e w ∈W, e ∈ E (11)

xwa
se = 0 w ∈W, e ∈ E, a ∈ A, s ∈ S : cea = 0 (12)

xwa
se ∈ {0, 1} w ∈W, e ∈ E, a ∈ a, s ∈ S (13)

ywa
se ≥ 0 w ∈W, e ∈ E, a ∈ A, s ∈ S (14)

δ+
ew, δ

−
ew ≥ 0 e ∈ E,w ∈W. (15)

Objective function (3) minimizes the total deviation ∆ between the amount
of weekly contractual hours for each worker (hmax

e ) and the actual working hours
(ywa

se ). Constraints (4) impose that each employee must be weekly assigned to
exactly one shift s ∈ S and one sector a ∈ A. Constraints (5) ensure that if an
employee e ∈ E is designated to sector a ∈ A in the first week (w = 1), he/she
must work in the same sector in the next week (w = 2). Constraints (6) impose
each employee to work in exactly one sector per shift. Constraints (7) state that
an employee can only work on the Saturday shift (s = 3) if he/she is assigned
to the morning shift s = 1 to work in sector a = 1. Constraints (8) forbid
all employees to work in sectors 2, 3 and 4 on the Saturday shift. Constraints
(9) enforce a maximum amount of weekly working hours, whereas constraints
(10) ensure that the working hours requested for every shift in each sector are
respected. Moreover, constraints (11) indicate the contractual amount of weekly
working hours for each employee. Constraints (12) ensure the compatibility of
designating an employee e ∈ E to work in sector a ∈ A. Finally, constraints
(13)–(15) define the domain of the variables.

5 Computational results

The model was coded in Python using PuLP [13] and executed on an Intel
i5-8250U 1.60 GHz with 8 GB of RAM running Windows 10. CBC (https:
//github.com/coin-or/Cbc) from COIN-OR [12] was used as a MILP solver.
A time limit of 600 seconds was imposed for each execution of the model.

Two scenarios were considered in our testing. Scenario I assumes that the
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employees are only eligible to work on the same sectors associated with the
solution generated by the company, i.e., the values of cea are taken directly
from such solution. The goal is to verify whether it is possible to obtain an
improved solution while keeping the same groups of employees per sector. In
Scenario II, we use the values of cea provided by the company, which were
determined according to the ability of a given employee e ∈ E to work on a
specific sector a ∈ A, thus allowing new groups of employees to be formed.

Table 4 compares the results produced by the company with those obtained
in each of the two scenarios. It can be verified that solution found in Scenario
I yielded an improvement of 9% with respect to the solution generated by the
company after the pandemic. This can be considered a very good result, given
that the groups of employees are the same in both solutions. Nevertheless, the
gains in Scenario II were way more substantial. More precisely, allowing the
model to form new groups of employees, while respecting their corresponding
skills, led to an improvement of 37.3% on the value of ∆. We also mention that
the CPU time in seconds spent by CBC in Scenarios I and II were 0.58 and
0.91, respectively, so the model was very quick in solving the instance.

The average values of R are the same for all scenarios, equaling the one
obtained by the solution generated by the company after the pandemic. Note
that it is not possible to improve the value ofR any further because of constraints
(10), which in turn impose a certain amount of working hours for each shift s ∈ S
and each sector a ∈ A.

Table 4: Comparison between the solutions produced by the company and by
the model

Before After Scenario I Scenario II
a w ∆ R ∆ R ∆ R ∆ R

1
1 0

3.70
1

2.00
14

2.00
8

1.83
2 0 28 14 8

2
1 0

3.00
10

1.00
30

1.00
10

1.50
2 0 30 10 20

3
1 1

5.70
16

2.50
5

2.50
5

2.00
2 1 9 16 6

4
1 2

5.00
12

2.00
11

2.00
11

2.00
2 2 20 11 11

Tot = 6 Avg = 4.4 Tot=126 Avg = 1.9 Tot = 111 Avg = 1.9 Tot = 79 Avg = 1.9

We also conducted experiments on 27 randomly generated instances by vary-
ing the number of employees (25, 35, and 45) and sectors (3, 4, and 5), as well
as by considering different probabilities for having cea = 1, namely, 65%, 75%
and 85%. In this case, the goal is to measure the performance of the model in
terms of scalability, solution quality and risk factor when trying to solve larger
instances with different characteristics.

Table 5 presents the results found on these instances, where for each of them
we report the CPU time in seconds, together with the gap, ∆ and R values,
respectively. One can see that only 7 instances were solved to optimality, but
the average gaps were, in most cases, relatively small (below 5%), with the
exception of instances E25-A3-85, E25-A4-65, E25-A5-75, and E35-A5-65.
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Table 5: Results found by the proposed model on 27 randomly generated in-
stances
instance time %gap ∆ R instance time %gap ∆ R
E25-A3-65 0.85 0.00 63 3.16 E35-A4-85 600 3.96 62 3.37
E25-A3-75 1.16 0.00 46 3.16 E35-A5-65 600 14.98 74 2.50
E25-A3-85 600 15.14 74 3.16 E35-A5-75 600 2.81 66 2.50
E25-A4-65 600 10.59 75 2.12 E35-A5-85 600 0.00 44 2.50
E25-A4-75 600 0.00 71 2.12 E45-A3-65 0.67 0.00 118 6.50
E25-A4-85 600 0.00 68 2.12 E45-A3-75 0.90 0.00 98 6.50
E25-A5-65 600 1.37 73 1.50 E45-A3-85 36.34 0.00 85 6.50
E25-A5-75 600 7.46 73 1.50 E45-A4-65 600 1.62 88 4.62
E25-A5-85 600 3.04 35 1.50 E45-A4-75 600 2.20 91 4.62
E35-A3-65 0.93 0.00 48 4.83 E45-A4-85 600 0.00 92 4.62
E35-A3-75 2.40 0.00 60 4.83 E45-A5-65 600 2.27 96 3.50
E35-A3-85 600 3.01 56 4.83 E45-A5-75 600 1.25 97 3.50
E35-A4-65 600 4.00 62 3.37 E45-A5-85 600 1.87 67 3.50
E35-A4-75 600 0.00 60 3.37

It is important to highlight that, for practical reasons, we decided to use
CBC as a MILP solver, which is open-source and so easily adoptable in many
applications. Nonetheless, for the sake of comparison, we also performed tests
using Gurobi 9.02 [8], and it was observed that the optimal solutions for all
instances were found in up to two seconds.

6 Concluding remarks

This paper studied a real-life personnel scheduling problem, motivated by Covid-
19 pandemic, from a large Italian pharmaceutical distribution warehouse op-
erated by Coopservice. A MILP formulation was proposed for the problem,
which was solved using an open-source optimization software, namely CBC from
COIN-OR. The optimal solution obtained by our formulation was capable of
considerably improving the schedule adopted by the company. Tests were also
performed on larger and randomly generated instances to measure the scalabil-
ity of CBC when solving our model, and the results found were of high quality
for the vast majority of the cases. In addition, we conducted experiments us-
ing Gurobi 9.02, which quickly managed to find the optimal solutions for all
instances.

Because Coopservice spends a large part of its budget on human resources
(more than 20,000 employees), it is crucial to have a strategy to properly manage
the personnel, especially during emergency situations such as epidemic crises.
In general, this problem faces the issue of reducing the risk of contagion, and of
organizing the schedule of the shifts in these type of scenarios. Therefore, our
findings can be of general interest, especially under the circumstances related to
pandemics. The solution of this problem in the specific case of Coopservice is not
only relevant for demonstrating a successful case study, but is also interesting
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for many related applications. For example, the problem of organizing activities
in close spaces or in warehouses with isles containing highly skilled employees
that are not allowed to work together.
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