In this paper we prove the higher differentiability in the scale of Besov spaces of the solutions to a class of obstacle problems of the type min∫ΩF(x,z,Dz):z∈Kψ(Ω). Here Ω is an open bounded set of Rn, n≥2, ψ is a fixed function called obstacle and Kψ(Ω) is set of admissible functions z∈W1,p(Ω) such that z≥ψ a.e. in Ω. We assume that the gradient of the obstacle belongs to a suitable Besov space. The main novelty here is that we are not assuming any differentiability on the partial maps x↦F(x,z,Dz) and z↦F(x,z,Dz), but only their Hölder continuity.
Regularity results for a class of non-differentiable obstacle problems / Eleuteri, M.; Passarelli di Napoli, A.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 194:(2020), pp. 111-434. [10.1016/j.na.2019.01.024]
Regularity results for a class of non-differentiable obstacle problems
Eleuteri M.;Passarelli di Napoli A.
2020
Abstract
In this paper we prove the higher differentiability in the scale of Besov spaces of the solutions to a class of obstacle problems of the type min∫ΩF(x,z,Dz):z∈Kψ(Ω). Here Ω is an open bounded set of Rn, n≥2, ψ is a fixed function called obstacle and Kψ(Ω) is set of admissible functions z∈W1,p(Ω) such that z≥ψ a.e. in Ω. We assume that the gradient of the obstacle belongs to a suitable Besov space. The main novelty here is that we are not assuming any differentiability on the partial maps x↦F(x,z,Dz) and z↦F(x,z,Dz), but only their Hölder continuity.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0362546X19300331-main.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
828.19 kB
Formato
Adobe PDF
|
828.19 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris