In this study Acetobacter pasteurianus strain UMCC 2951 was tested as a microbial starter to conduct acetification processes by repeatedly cultivation cycles under high temperature acetification at 40 ± 1 °C. Acid production and acetification rate increased with repeated cultures under high temperature acetification as adaptation period increased, but were still lower than acetification at 30 ± 1 °C. However, the addition of 0.15 % calcium chloride reduced the negative effects of 40 ± 1 °C on both acid production and acetification rate compared to 30 ± 1 °C. A strong decrease in fatty acids and phosphatidylethanolamine and increases in phosphatidylcholine and phosphatidylglycerol in cell membranes were found under high acid and high temperature acetification. In addition, transmission electron microscope images reveal a more compact cell wall when calcium chloride was added to the cultivation medium. The strategy used in this study confirmed that the use of acetic acid bacteria as microbial starters could be effective also at temperature above the optimal values, when acetification processes are managed through repeated semi-continuous cycles.
Conducting High acetic acid and temperature acetification processes by Acetobacter pasteurianus UMCC 2951 / Pothimon, Ruttipron; Gullo, Maria; La China, Salvatore; Thompson, Anthony Keith; Krusong, Warawut. - In: PROCESS BIOCHEMISTRY. - ISSN 1359-5113. - 98:(2020), pp. 41-50. [10.1016/j.procbio.2020.07.022]
Conducting High acetic acid and temperature acetification processes by Acetobacter pasteurianus UMCC 2951
Gullo, MariaMembro del Collaboration Group
;La China, SalvatoreInvestigation
;
2020
Abstract
In this study Acetobacter pasteurianus strain UMCC 2951 was tested as a microbial starter to conduct acetification processes by repeatedly cultivation cycles under high temperature acetification at 40 ± 1 °C. Acid production and acetification rate increased with repeated cultures under high temperature acetification as adaptation period increased, but were still lower than acetification at 30 ± 1 °C. However, the addition of 0.15 % calcium chloride reduced the negative effects of 40 ± 1 °C on both acid production and acetification rate compared to 30 ± 1 °C. A strong decrease in fatty acids and phosphatidylethanolamine and increases in phosphatidylcholine and phosphatidylglycerol in cell membranes were found under high acid and high temperature acetification. In addition, transmission electron microscope images reveal a more compact cell wall when calcium chloride was added to the cultivation medium. The strategy used in this study confirmed that the use of acetic acid bacteria as microbial starters could be effective also at temperature above the optimal values, when acetification processes are managed through repeated semi-continuous cycles.File | Dimensione | Formato | |
---|---|---|---|
POTHIMON_2020.pdf
Accesso riservato
Descrizione: pdf finale
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.69 MB
Formato
Adobe PDF
|
2.69 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris