An improved version of the Random Path Length algorithm is used to simulate the time response of Separate Absorption and Multiplication Avalanche PhotoDiodes (SAM-APDs) in the linear regime. The model takes into account both the diffusion and the drift of carriers in the absorption region as well as impact ionization scattering events in the multiplication region. An extended formulation of Ramo's theorem is used to determine the current waveforms. The new algorithm has been used to extract the jitter of the time response of avalanche photodiodes to photons, which is a relevant figure of merit for time of flight applications of SAM-APDs. It is found that an electric field in the absorption region small enough to avoid unwanted carrier multiplication or band-to-band tunneling, is beneficial to reduce the jitter. Furthermore, we have found that, in APDs working in the linear regime, the stochastic duration of the current pulse makes difficult the use of circuit techniques, such as crossover timing, with constant delay lines aimed at detecting the individual pulses. The problem is partly mitigated when SAM-APDs are used for the detection of high energy photons, such as X-rays.

A model for the jitter of avalanche photodiodes with separate absorption and multiplication regions / Rosset, F.; Pilotto, A.; Selmi, L.; Antonelli, M.; Arfelli, F.; Biasiol, G.; Cautero, G.; De Angelis, D.; Driussi, F.; Menk, R. H.; Nichetti, C.; Steinhartova, T.; Palestri, P.. - In: NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. - ISSN 0168-9002. - 977:(2020), pp. 164346-164355. [10.1016/j.nima.2020.164346]

A model for the jitter of avalanche photodiodes with separate absorption and multiplication regions

Selmi L.;Palestri P.
2020

Abstract

An improved version of the Random Path Length algorithm is used to simulate the time response of Separate Absorption and Multiplication Avalanche PhotoDiodes (SAM-APDs) in the linear regime. The model takes into account both the diffusion and the drift of carriers in the absorption region as well as impact ionization scattering events in the multiplication region. An extended formulation of Ramo's theorem is used to determine the current waveforms. The new algorithm has been used to extract the jitter of the time response of avalanche photodiodes to photons, which is a relevant figure of merit for time of flight applications of SAM-APDs. It is found that an electric field in the absorption region small enough to avoid unwanted carrier multiplication or band-to-band tunneling, is beneficial to reduce the jitter. Furthermore, we have found that, in APDs working in the linear regime, the stochastic duration of the current pulse makes difficult the use of circuit techniques, such as crossover timing, with constant delay lines aimed at detecting the individual pulses. The problem is partly mitigated when SAM-APDs are used for the detection of high energy photons, such as X-rays.
2020
977
164346
164355
A model for the jitter of avalanche photodiodes with separate absorption and multiplication regions / Rosset, F.; Pilotto, A.; Selmi, L.; Antonelli, M.; Arfelli, F.; Biasiol, G.; Cautero, G.; De Angelis, D.; Driussi, F.; Menk, R. H.; Nichetti, C.; Steinhartova, T.; Palestri, P.. - In: NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. - ISSN 0168-9002. - 977:(2020), pp. 164346-164355. [10.1016/j.nima.2020.164346]
Rosset, F.; Pilotto, A.; Selmi, L.; Antonelli, M.; Arfelli, F.; Biasiol, G.; Cautero, G.; De Angelis, D.; Driussi, F.; Menk, R. H.; Nichetti, C.; Steinhartova, T.; Palestri, P.
File in questo prodotto:
File Dimensione Formato  
2020_Rosset_NIMA.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1206561
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact