The signaling system of phosphoinositides (PI) is involved in a variety of cell and tissue functions, including membrane trafficking, ion channel activity, cell cycle, apoptosis, differentiation, and cell and tissue polarity. Recently, PI and related molecules, such as the phosphoinositide-specific phospholipases C (PI-PLCs), main players in PI signaling were supposed to be involved in inflammation. Besides the control of calcium levels, PI-PLCs contribute to the regulation of phosphatydil-inositol bisphosphate metabolism, crucial in cytoskeletal organization. The expression of PI-PLCs is strictly tissue specific and evidences suggest that it varies under different conditions, such as tumor progression or cell activation. In a previous study, we obtained a complete panel of expression of PI-PLC isoforms in human umbilical vein endothelial cells (HUVEC), a widely used experimental model for endothelial cells. In the present study, we analyzed the mRNA concentration of PI-PLCs in lipopolysaccharide (LPS)-treated HUVEC by using the multiliquid bioanalyzer methodology after 3, 6, 24, 48, and 72 h from LPS administration. Marked differences in the expression of most PI-PLC codifying genes were evident.
Lypopolysaccharide Downregulates the Expression of Selected Phospholipase C Genes in Cultured Endothelial Cells / Lo Vasco, Vincenza Rita; Leopizzi, Martina; Chiappetta, Caterina; Puggioni, C.; Rocca, C.; Della Rocca, Carlo; Polonia, P.; Businaro, Rita. - In: INFLAMMATION. - ISSN 0360-3997. - 36:4(2013), pp. 862-868. [10.1007/s10753-013-9613-3]
Lypopolysaccharide Downregulates the Expression of Selected Phospholipase C Genes in Cultured Endothelial Cells
Vincenza Rita Lo Vasco;
2013
Abstract
The signaling system of phosphoinositides (PI) is involved in a variety of cell and tissue functions, including membrane trafficking, ion channel activity, cell cycle, apoptosis, differentiation, and cell and tissue polarity. Recently, PI and related molecules, such as the phosphoinositide-specific phospholipases C (PI-PLCs), main players in PI signaling were supposed to be involved in inflammation. Besides the control of calcium levels, PI-PLCs contribute to the regulation of phosphatydil-inositol bisphosphate metabolism, crucial in cytoskeletal organization. The expression of PI-PLCs is strictly tissue specific and evidences suggest that it varies under different conditions, such as tumor progression or cell activation. In a previous study, we obtained a complete panel of expression of PI-PLC isoforms in human umbilical vein endothelial cells (HUVEC), a widely used experimental model for endothelial cells. In the present study, we analyzed the mRNA concentration of PI-PLCs in lipopolysaccharide (LPS)-treated HUVEC by using the multiliquid bioanalyzer methodology after 3, 6, 24, 48, and 72 h from LPS administration. Marked differences in the expression of most PI-PLC codifying genes were evident.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris