We obtain existence results for mild solutions of a fractional differential inclusion subjected to impulses and nonlocal initial conditions. By means of a technique based on the weak topology in connection with the Glicksberg-Ky Fan Fixed Point Theorem we are able to avoid any hypothesis of compactness on the semigroup and on the nonlinear term and at the same time we do not need to assume hypotheses of monotonicity or Lipschitz regularity neither on the nonlinear term, nor on the impulse functions, nor on the nonlocal condition. An application to a fractional diffusion process complete the discussion of the studied problem

Evolution fractional differential problems with impulses and nonlocal conditions / Benedetti, Irene; Obukhovskii, Valeri; Taddei, Valentina. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 13:7(2020), pp. 1899-1919. [10.3934/dcdss.2020149]

Evolution fractional differential problems with impulses and nonlocal conditions

Valeri Obukhovskii;Valentina Taddei
2020

Abstract

We obtain existence results for mild solutions of a fractional differential inclusion subjected to impulses and nonlocal initial conditions. By means of a technique based on the weak topology in connection with the Glicksberg-Ky Fan Fixed Point Theorem we are able to avoid any hypothesis of compactness on the semigroup and on the nonlinear term and at the same time we do not need to assume hypotheses of monotonicity or Lipschitz regularity neither on the nonlinear term, nor on the impulse functions, nor on the nonlocal condition. An application to a fractional diffusion process complete the discussion of the studied problem
13
7
1899
1919
Evolution fractional differential problems with impulses and nonlocal conditions / Benedetti, Irene; Obukhovskii, Valeri; Taddei, Valentina. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 13:7(2020), pp. 1899-1919. [10.3934/dcdss.2020149]
Benedetti, Irene; Obukhovskii, Valeri; Taddei, Valentina
File in questo prodotto:
File Dimensione Formato  
Benedetti-Obukhovskii-Taddei4.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Pre-print dell'autore (bozza pre referaggio)
Dimensione 316.07 kB
Formato Adobe PDF
316.07 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1203310
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact