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Abstract

We obtain existence results for mild solutions of a fractional differential inclusion subjected
to impulses and nonlocal initial conditions. By means of a technique based on the weak
topology in connection with the Glicksberg-Ky Fan Fixed Point Theorem we are able to avoid
any hypothesis of compactness on the semigroup and on the nonlinear term and at the same
time we do not need to assume hypotheses of monotonicity or Lipschitz regularity neither
on the nonlinear term, nor on the impulse functions, nor on the nonlocal condition. An
application to a fractional diffusion process complete the discussion of the studied problem.
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1 Introduction

Fractional calculus allows to consider integration and differentiation of any order, not nec-
essarily integer. In recent years more and more attention has been given to this area of
research. The reason is not merely theoretical: one of the most important advantage of
fractional order models in comparison with integer order ones is that fractional integrals
and derivatives are a powerful tool for the description of memory and hereditary properties
of some materials. In fact integer order derivatives are local operators, while the fractional
order derivative of a function in a point depends on the past values of such function. This
features motivated the successful use of fractional calculus in nonlocal diffusion processes.
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There are some different definitions of fractional derivatives: Riemann-Liouville, Hadamard
and Caputo are examples of fractional derivatives. For a survey on the subject see e.g.
[18, 23, 26]. In particular, the Caputo fractional derivative is especially suitable for physical
applications. Unlike the Riemann-Liouville fractional derivative, the Caputo derivative of a
constant is zero and it allows a physical interpretation of the initial conditions as well as of
boundary conditions.
By replacing the time derivative with a fractional derivative of order α, with 0 < α < 2,
in the classical partial differential equations describing diffusion or wave propagation, we
obtain processes which interpolate (if 1 < α < 2) or extrapolate (if 0 < α < 1) the classical
phenomena. The former are referred to as intermediate processes, the latter as ultraslow
processes. We focus our study on the ultraslow processes and we merge these problems in
the unitary framework of abstract fractional semilinear differential equations or inclusions,
i.e. {

CDαx(t) ∈ Ax(t) + F (t, x(t)), for a.a. t ∈ [0, b]
0 < α < 1

(1.1)

where x is a function with values in a reflexive Banach space E, CDα means the Caputo
fractional derivative, A : D(A) ⊂ E → E is the generator of a C0−semigroup {U(t)}t≥0, F :
[0, b]× E ( E is a given map or multivalued map (multimap for short).
In order to better describe natural phenomena it is useful to consider non necessarily contin-
uous propagation of the studied process, allowing that the model is subjected to short-term
perturbations in time, the so-called impulses. For instance in the periodic treatment of some
diseases, impulses may correspond to administration of a drug treatment; in environmental
sciences, impulses may correspond to seasonal changes or harvesting; in economics impulses
may correspond to abrupt changes of prices. For these reasons, we consider the fractional
evolution inclusion (1.1) in the presence of impulse effects, i.e.:

CDαx(t) ∈ Ax(t) + F (t, x(t)), for a.a. t ∈ [0, b], t 6= t1, . . . , tN
x(t+k ) = x(tk) + Ik(x(tk)), k = 1, . . . , N
0 < α < 1

(1.2)

where Ik : E → E, k = 1, · · · , N are given maps and x(t+) = lim
s→t+

x(s) with 0 = t0 < t1 <

· · · < tN < tN+1 = b.
Real life problems are often associated with periodic, anti-periodic, mean value or multipoint
boundary conditions on the solutions. A unitary framework including all these conditions
is the one of nonlocal boundary problems, that is to associate with the differential equation
or inclusion an initial condition depending on the behaviour of the whole solution. More
precisely, we consider problem (1.2) associated with the nonlocal boundary condition

x(0) ∈M(x), (1.3)

with M : C([0, b];E) ( E a multivalued not necessarily linear operator (multioperator for
short), where C([0, b];E) is the space of piecewise continuous functions.
The boundary condition considered is fairly general and includes the initial value problem as
well as several nonlocal conditions. For instance, the following particular cases are covered
by our general approach:

(i) M(x) =
1

b

∫ b

0
p(t)x(t) dt with p ∈ L1([0, b];R).
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(ii) M(x) =

n∑
i=1

αix(si) + x0, with x0 ∈ E, αi 6= 0, si ∈ [0, b], i = 1, . . . , n.

(iii) M(x) ≡ B, with B a prescribed set.

There are mainly two approaches to define the solution of Caputo fractional differential
equations with impulses. One keeps the lower limit 0 of the Caputo derivative for all t ≥ 0,
considering the same fractional equation on each subinterval (tk, tk+1), but with different
initial conditions (see, for example, [14, 32, 33, 34]). The other one is based on the fact
that the Caputo fractional derivative depends significantly on the initial point, leading to
a change of the equation on each interval (tk, tk+1). Thus with this approach the lower
limit of the Caputo fractional derivative is given by the impulse time tk (see, for example,
[1, 2, 8, 7, 12, 24, 28, 29]).
More precisely, the approach in [32] is based on the possibility to split a nonhomogeneous
linear fractional problem with fixed impulses into a nonhomogeneous nonimpulsive problem
and a homogeneous impulsive one. The solution of the original problem is then written as
the sum of the solutions of the splitted ones. This method doesn’t work in our case, because
in presence of a nonlinear term and of nonconstant impulse functions, after each jump a new
dynamic starts.
Thus, following the approach in [28], firstly we give a definition of mild solution defined
step by step, based on the definition of mild solution for the Cauchy initial problem with
starting point a > 0 associated to a fractional differential inclusion of type (1.1). Then we
give a new concept of mild solution through four operators recursively defined, for details see
Section 4. In [28], see Remark 3.2, the authors declare that the mild solutions for impulsive
Caputo differential equations can be expressed only by using piecewise functions, however
with this approach we are able to give a unique formula for the solution. This definition takes
into account the fact that the families of operators {Sα(t)}t∈[0,b] and {Tα(t)}t∈[0,b] defined
respectively in (2.1) and (2.2) do not satisfy the semigroup properties, that the solutions
of an impulsive equation are no longer continuous and that the Caputo derivative strongly
depends on the initial time. In our opinion it is particularly suitable to prove existence
results in the presence of nonlocal conditions.
By means of a technique based on the weak topology and developed in [3], applying the
Glicksberg-Ky Fan fixed point Theorem, we are able to prove the existence of at least
one solution of problem (1.2)-(1.3). With this approach, we avoid the compactness of the
semigroup generated by the linear part and we do not need to assume any hypothesis of
monotonicity, Lipschizianity, or compactness neither on the nonlinear term F , nor on the
impulse functions, nor on the nonlocal condition. We apply a similar approach in the
framework of fractional differential inclusion in [4, 5] and in comparison with the literature on
the subject, this is the main novelty of the paper. For instance, in [2, 8, 12, 29] the existence,
uniqueness and controllability ([29]) of the solution of a problem similar to (1.2) via fixed
point theorems is proved under Lipschitz regularity assumptions on the nonlinear part, the
nonlocal condition and the impulse functions; applying the monotone iterative technique
in the presence of upper and lower solutions, in [24] the existence of extremal solutions is
obtained under monotonicity and compactness like assumptions on the nonlinear term and
on the nonlocal condition and under monotonicity assumptions on the impulse functions; in
[1] the compactness of the α-resolvent family generated by the linear part is assumed; in [7]
and in [28] the Lipschitz regularity of the nonlinear term, the nonlocal condition and the
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impulse functions, or alternatively the compactness of the α−resolvent family generated by
the linear part, of the nonlinear term, of the nonlocal condition and of the impulse function
are taken as main hypotheses.
We complete our study with an application to a ultraslow process of this kind

Dα
t u = ∆u+

[
f1

(
t, x,

∫
Ω
k1(x, ξ)u(t, ξ) dξ

)
, f2

(
t, x,

∫
Ω
k2(x, ξ)u(t, ξ) dξ

)]
ψ(t, x), (1.4)

with t ∈ [0, b], t 6= tk, k = 1, . . . , N, x ∈ Ω, where Ω is a nonempty domain in Rn, with
impulses

u(t+k , x) = u(tk, x) + ck, k = 1, ..., N, x ∈ Ω

and subjected to the boundary conditions

u(t, x) = 0, t ∈ [0, b], x ∈ ∂Ω

u(0, x) =
∑J

i=1 αiu(si, x), x ∈ Ω, s1 ≤ 0 < · · · < sJ ≤ b.

The problem (1.4) is a perturbation by means of a nonlocal forcing term of the diffusion
of particles verifying a generalized Fick’s second law. In particular, the multivalued nonlin-
earity represents the external influence on the process which is known up to some degree
of uncertainty and the integral term describes the property that the state of the problem
at a given point may include states in a suitable neighborhood. After the pioneering work
of Nigmatullin in [25], who explicitly introduced in physics the fractional diffusion equation
to describe diffusion in media with fractal geometry, Mainardi in [22] has provided a phys-
ical interpretation of it in the framework of dynamic viscoelasticity, pointing out that the
fractional wave equation governs the propagation of mechanical diffusive waves in viscoelas-
tic media which exhibit a power-law creep. Kochubei in [19] uses the semigroup theory in
Banach spaces to study the existence and the properties of the solutions of the fractional
diffusion equation with variable coefficients. More recently, in collaboration with Eidelman
he constructed and investigated the fundamental solution of the Cauchy problem associated
to the fractional diffusion equation, see [10]. Later on, several perturbation of the linear
fractional diffusion equation have been studied in literature, for instance in [24, 29, 32, 34]
the authors study specific ultraslow diffusion types of porous medium with impulses and
nonlocal initial conditions arising in heat conduction similar to (1.4).

2 Basic results and notation

Let (E, ‖ · ‖) be a reflexive Banach space and Ew denote the space E endowed with the
weak topology. We denote by B the closed unit ball in E and for a set A ⊂ E, the symbol
A
w

means the weak closure of A. In the whole paper we denote by ‖ · ‖p and ‖ · ‖0 the
Lp([0, b];R)-norm, 1 < 1

α < p < ∞, and the C[0, b];E)-norm respectively; we consider the
norm of a set Ω ⊂ E defined as

‖Ω‖ := sup{‖x‖ : x ∈ Ω}

and by ν we denote the Lebesgue measure on [0, b].

Let us briefly recall that a multimap Φ: X ( Y of topological spaces X and Y is a relation
that assigns to every point x ∈ X a nonempty set Φ(x) ⊂ Y . A multimap Φ of Banach
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spaces is called weakly sequentially closed, provided the conditions xn ⇀ x0, yn ⇀ y0, and
yn ∈ Φ(xn), imply y0 ∈ Φ(x0). It is clear that this condition is equivalent to the hypothesis
that Φ has a weakly sequentially closed graph. A multimap Φ: X ( Y is said to be upper
semicontinuous (u.s.c. for short), if the set Φ−1(V ) := {x ∈ X : Φ(x) ⊂ V } is open for every
open subset V ⊆ Y .

Let C([0, b];E) be the space of all piecewise continuous functions x : [0, b] → E with
discontinuity points at t = tk, k = 1, . . . , N such that all values x(t+k ) = lim

s→t+k
x(s) and

x(t−k ) = lim
s→t−k

x(s) are finite and x(tk) = x(t−k ) for all such points. The space C([0, b];E) is a

normed space endowed with the ‖ · ‖0−norm.
Let BV ([0, b];E) be the space of functions of bounded variation. We recall (see [6, Theorem
4.3]) that a sequence {xn} ⊂ BV ([0, b];E) weakly converges to an element x ∈ BV ([0, b];E)
if and only if

1. ‖xn(t)‖ ≤ N , for each n ∈ N and for each t ∈ [0, b], for some constant N > 0;

2. xn(t) ⇀ x(t) for every t ∈ [0, b].

Thus, the above characterization of weakly convergent sequences holds also for the space
C([0, b];E). Moreover, we recall that a map φ : X → Y is weakly sequentially continuous
if the weak convergence of a sequence {xn} ⊂ X to an element x ∈ X implies the weak
convergence in Y of the sequence {φ(xn)} to φ(x).

The proof of the main result is based on the following Glicksberg-Ky Fan Theorem ([13],
[15]).

Theorem 2.1. Let X be a Hausdorff locally convex topological vector space, K a compact
convex subset of X and G : K ( K a upper semicontinuous multimap with closed, convex
values. Then G has a fixed point x∗ ∈ K i.e. x∗ ∈ G(x∗).

For a map f : [c, d] → E, the definition of the Riemann-Liouville fractional derivative with
0 < α < 1 is the following

[Dαf ](t) =
1

Γ(1− α)

d

dt

∫ t

c

f(s)

(t− s)α
ds,

with Γ the Euler function:

Γ(α) =

∫ ∞
0

xα−1e−x dx;

while the corresponding fractional integral is defined as

1

Γ(α)

∫ t

c
(t− s)α−1x(s) ds.

The Caputo fractional derivative is defined through the Riemann-Liouville fractional deriva-
tive as

[CDαf ](t) = Dα[f(·)− f(c)](t).

In the whole paper we assume that A : D(A) ⊂ E → E is a linear, not necessarily bounded
operator generating a bounded C0-semigroup U : R+ → L(E), i.e. a family of bounded
linear operators U(t) : E → E, for t ∈ R+ such that
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(a) U(0) = I;

(b) U(t+ r) = U(t)U(r) = U(r)U(t) for every t, r ∈ R+;

(c) the function t ∈ R+ → U(t)x ∈ E is continuous for every x ∈ E;

(d) D := supt∈[0,∞] ‖U(t)‖ < +∞.

Define the families of operators {Sα(t)}t∈[0,b] and {Tα(t)}t∈[0,b] in E by the formulas

Sα(t)x =

∫ ∞
0

φα(s)U(tαs)x ds, (2.1)

where φα is the probability density function

φα(s) =
1

α
s−

α+1
α ψα(s−1/α),

ψα(s) =
1

π

∞∑
n=1

(−1)n−1s−nα−1 Γ(nα+ 1)

n!
sin(nπα),

and

Tα(t)x = α

∫ ∞
0

sφα(s)U (tαs)x ds. (2.2)

Remark 2.1. (See, e.g., [34])

∫ ∞
0

sφα(s) ds =
1

Γ(α+ 1)
and

∫ ∞
0

φα(s) ds = 1.

By Propositions 2.1 and 2.2. in [35] the next regularity result holds.

Lemma 2.1. The operator functions Sα and Tα possess the following properties:

a) for every t ∈ [0, b], Sα(t) and Tα(t) are linear and bounded operators. More precisely,

‖Sα(t)‖ ≤ D and ‖Tα(t)‖ ≤ Dα

Γ(1 + α)
for every t ∈ [0, b];

b) Sα and Tα are strongly continuous, i.e., for each x ∈ E, the functions Sα(·)x : [0, b]→
E and Tα(·)x : [0, b]→ E are continuous.

3 Main assumptions

We will study problem (1.2) - (1.3) under the following assumptions.

(A) A is the generator of a bounded C0−semigroup {U(t)}t≥0.

Concerning the multivalued nonlinearity F : [0, b] × E ( E we will suppose that it has
closed bounded and convex values and, moreover, the following conditions hold true:

(F1) the multifunction F (·, c) : [0, b] ( E has a strongly measurable selection for every
c ∈ E, i.e., there exists a measurable function f : [0, b] → E such that f(t) ∈ F (t, c)
for a.e. t ∈ [0, b];
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(F2) the multimap F (t, ·) : E ( E is weakly sequentially closed for a.e. t ∈ [0, b];

We assume that operators M and Ik satisfy the following conditions.

(M) M : C([0, b];E) ( E is a weakly sequentially closed multioperator, with convex, closed
and bounded values, mapping bounded sets into bounded sets and such that

lim sup
‖u‖0→∞

‖M(u)‖
‖u‖0

= l with l <
1

DN+1 + 1
. (3.1)

(Ik) the functions Ik : E → E, k = 1, . . . , N satisfy the following assumptions:

(i) are weakly sequentially continuous;

(ii) map bounded sets into bounded sets;

(iii) lim sup
‖c‖→∞

‖Ik(c)‖
‖c‖

= 0, k = 1, . . . , N.

For all our preliminary results we always assume the following condition of local integral
boundedness on the multivalued map F .

(F3) for every r > 0 there exists a function µr ∈ Lp([0, b];R+) with p > 1
α , such that for

each c ∈ E, ‖c‖ ≤ r:
‖F (t, c)‖ ≤ µr(t) for a.a. t ∈ [0, b].

For our main result (see Theorem 5.1), instead of condition (F3), we need the stronger
assumption below:

(F3′) for every n ∈ N there exists a function ϕn ∈ Lp([0, b];R), with p > 1
α such that, for

a.a. t ∈ [0, b],
sup
‖x‖≤n

‖F (t, x)‖ ≤ ϕn(t)

and

lim inf
n→∞

1

n

{∫ b

0
|ϕn(s)|p ds

} 1
p

= 0. (3.2)

Note that, under hypotheses (F1-3), given q ∈ C([0, b];E), the superposition multioperator
PF (q) : C([0, b];E) ( Lp([0, b];E), with

PF (q) = {f ∈ Lp([0, b];E) : f(t) ∈ F (t, q(t)) a.a. t ∈ [0, b]},

is well defined (see [4, Propositon 3.1]).

Remark 3.1. It is usual in literature to assume that the limit in (3.1) is equal to zero. This
is the case when the multimap M is globally bounded, for example when M is as in (iii).
On the contrary, we are able to consider operator M satisfying a linear growth condition,
as in (i) and (ii). In these cases condition (3.1) respectively reads as ‖p‖1 < b

DN+1+1
and∑n

i=1 |αi| <
1

DN+1+1
.

In the next Section, in order to state our main results, we construct the definition of mild
solution we will consider.
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4 New concept of solution

It is well known that a function x ∈ C([0, b];E) is a mild solution of the Cauchy problem
CDαx(t) = Ax(t) + f(t), for a.e. t ∈ [0, b],
x(0) = x0

0 < α < 1,
(4.1)

with A : D(A) ⊂ E → E a generator of a bounded C0-semigroup {U(t)}t≥0 and f ∈
Lp([0, b];E), p > 1

α , if it satisfies the integral formula

x(t) = Sα(t)x0 +

∫ t

0
(t− s)α−1Tα(t− s)f(s) ds, (4.2)

see e.g. [35, Definition 2.2]. Notice that, since p > 1
α the function r → rα−1 belongs to

Lp
′
([0, b];E), with p′ the conjugate exponent of p, and by Hölder inequality the integral in

(4.2) is well defined. Following the same reasoning as in [35, Lemma 2.3], it is possible to
justify the notion of the mild solution of problem (4.1) with starting point a > 0 by the
next arguments. Let x ∈ C([a, b];E) be a strong solution of (4.1) with starting point a > 0,
i.e. x : [a, b] → E satisfies the inclusion in (4.1) for a.e. t ∈ [a, b] and x(a) = x0. Then
x : [a, b]→ E is a solution of the following integral equation

x(t) = x0 +
1

Γ(α)

∫ t

a
(t− s)1−α(Ax(s) + f(s)) ds, t ∈ [a, b]. (4.3)

We extend the function x ∈ C([a, b];E) from the interval [a, b] to the interval [0, b] as follows:

y(t) =


0 t ∈ [0, a),

x0 +
1

Γ(α)

∫ t

a
(t− s)1−α(Ax(s) + f(s)) ds t ∈ [a, b].

Hence defining the Heaviside map H : R→ R as

H(t) =

{
0 t < 0
1 t ≥ 0

we have that y(t) = H(t− a)x(t), i.e.

y(t) = H(t−a)x0 +H(t−a)
1

Γ(α)

∫ t

a
(t−s)1−αAx(s) ds+H(t−a)

1

Γ(α)

∫ t

a
(t−s)1−αf(s) ds.

Thus, defining f̃ : [0, b]→ E as

f̃(t) =

{
0 0 ≤ t < a,
f(t) a ≤ t ≤ b,

we get

y(t) = H(t− a)x0 +
1

Γ(α)

∫ t

0
(t− s)1−αAy(s) ds+

1

Γ(α)

∫ t

0
(t− s)1−αf̃(s) ds. (4.4)
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Notice that the last two terms on the right hand side of equation (4.4) are the convolution

products of the function δ : [0, b] → R defined as δ(t) =
t1−α

Γ(α)
with Ay and f̃ respectively.

Let λ > 0 and denote by L the Laplace transform. It is well known that

L(δ)(λ) =
1

λα
,

L(H(· − a))(λ) =
e−λa

λ
.

Thus, denoting with v the Laplace transform of y, i.e.

v(λ) =

∫ ∞
0

e−λsy(s) ds,

and applying the Laplace transform to (4.4), recalling that the Laplace transform of the
convolution product of two functions is the product of the corresponding Laplace transforms,
we obtain

v(λ) =
e−λa

λ
x0 +

1

λα
Av(λ) +

1

λα
ω̃(λ),

where ω̃(λ) = L(f̃). Hence(
I − 1

λα
A

)
v(λ) =

e−λa

λ
x0 +

1

λα
ω̃(λ), λ > 0,

where I is the identity operator defined on E. Thus,

λ−α (λαI −A) v(λ) =
e−λa

λ
x0 +

1

λα
ω̃(λ), λ > 0.

Applying the operator (λαI −A)−1 λα to both sides of the previous equality, we have

v(λ) = (λαI −A)−1 λα−1e−λax0 + (λαI −A)−1 ω̃(λ).

It is possible to prove that for any x ∈ E, (λαI − A)−1x, λ > 0 is the Laplace transform of
the map t→ tα−1Tα(t)x and that (λαI −A)−1λα−1x, λ > 0 is the Laplace transform of the
map t → Sα(t)x. Therefore, inverting the Laplace transform and exploiting the definition
of the Laplace transform of a convolution product of two maps, we obtain

y(t) = H(t− a)Sα(t− a)x0 +

∫ t

0
(t− θ)α−1Tα(t− θ)f̃(θ) dθ, t ∈ [0, b].

Thus, by the definition of the map f̃ , we have

x(t) = Sα(t− a)x0 +

∫ t

a
(t− θ)α−1Tα(t− θ)f(θ) dθ, t ∈ [a, b]. (4.5)

According to (4.2) and (4.5), the solution of (4.1) when f ≡ 0 is x(t) = Sα(t)x0, while the
solution of the problem {

CDαx(t) = Ax(t), for a.a. t ∈ [a, b],
x(a) = Sα(a)x0

(4.6)
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is x(t) = Sα(t− a)x(a) = Sα(t− a)Sα(a)x0. Since the family {Sα(t)}t≥0 does not satisfy the
semigroup property, it follows that

Sα(t− a)Sα(a)x0 6= Sα(t)x0.

Therefore the solution of (4.1) with f ≡ 0 is not a solution of (4.6).
Thus, we have to define the solution of the impulsive problem step by step. Namely, consider
the following Cauchy problem with one impulse

CDαx(t) = Ax(t) + f(t), for a.a. t ∈ [0, t2],
x(t+1 ) = x(t−1 ) + I1(x(t1))
x(0) = x0

0 < α < 1,

(4.7)

where 0 < t1 < t2 and, as before, f ∈ Lp([0, t2];E), p > 1
α . Its mild solution is

x(t) =

{
Sα(t)x0 +

∫ t
0 (t− s)α−1Tα(t− s)f(s) ds 0 ≤ t ≤ t1

Sα(t− t1)x(t+1 ) +
∫ t
t1

(t− s)α−1Tα(t− s)f(s) ds t1 < t ≤ t2.

Indeed, by the above reasonings x satisfies the integral equation (4.2) in the interval [0, t1]
and the integral equation (4.5) with starting point t = t1 and initial value x(t1) = x(t+1 ) in
the interval ]t1, t2]. Hence, from x(t+1 ) = x(t−1 ) + I1(x(t1)) we get

x(t) =


Sα(t)x0 +

∫ t
0 (t− s)α−1Tα(t− s)f(s) ds 0 ≤ t ≤ t1

Sα(t− t1)[Sα(t1)x0 +
∫ t1

0 (t1 − s)α−1Tα(t1 − s)f(s)ds+ I1(x(t1))]+

+
∫ t
t1

(t− s)α−1Tα(t− s)f(s) ds t1 < t ≤ t2.

Reasoning by induction we get that the mild solution of the Cauchy problem with N ≥ 1
impulses 

CDαx(t) = Ax(t) + f(t), for a.a. t ∈ [0, b], t 6= t1, . . . , tN
x(t+k ) = x(tk) + Ik(x(tk)), k = 1, . . . , N
x(0) = x0

0 < α < 1

(4.8)

can be defined through four operators defined recursively. More precisely, we define the
maps ψk : (tk−1, tk]→ L(E), k = 1, . . . , N + 1, as{

ψ1(t) = Sα(t),
ψk(t) = Sα(t− tk)Sα(tk − tk−1) . . . Sα(t1), k = 2, . . . , N + 1

φk : C([0, b];E)→ C((tk, b];E), k = 1, . . . , N, as{
φ1(x)(t) = Sα(t− t1)I1(x(t1)),
φk(x)(t) = Sα(t− tk)[φk−1(x)(tk) + Ik(x(tk))], k = 2, . . . , N

and rk : Lp([0, b];E)→ C((tk, b];E), k = 1, . . . , N, as
r1(f)(t) = Sα(t− t1)

∫ t1

0
(t1 − s)α−1Tα(t1 − s)f(s) ds

rk(f)(t) = Sα(t− tk)

[
rk−1(f)(tk) +

∫ tk

tk−1

(tk − s)α−1Tα(tk − s)f(s) ds

]
k = 2, . . . , N.
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Let the operators A : [0, b] → L(E), B : C([0, b];E) → C([0, b];E), D : Lp([0, b];E) →
C([0, b];E) and F : Lp([0, b];E)→ C([0, b];E) be defined respectively as

A(t) = χ{0}(t)I +
N+1∑
k=1

χ(tk−1,tk](t)ψk(t)

B(x)(t) =

N∑
k=1

χ(tk,tk+1](t)φk(x)(t)

D(f)(t) =
N∑
k=1

χ(tk,tk+1](t)rk(f)(t)

F(f)(t) =

N+1∑
k=1

χ(tk−1,tk](t)

∫ t

tk−1

(t− s)α−1Tα(t− s)f(s) ds,

where χ : R → R is the characteristic function and I : E → E is the identity map in E.
Now, we can define the mild solution x : [0, b]→ E of (4.8) as

x(t) = A(t)x0 + B(x)(t) + D(f)(t) + F(f)(t), t ∈ [0, b].

Hence, we open the way towards the following concept of the mild solution to (1.1)-(1.3).

Definition 4.1. A function x ∈ C([0, b];E) is a mild solution to problem (1.1)-(1.3) if and
only if there exist ω ∈ M(x) and a map f ∈ Lp([0, b];E), p > 1

α , with f(t) ∈ F (t, x(t)) for
a.e. t ∈ [0, b] such that

x(t) = A(t)ω + B(x)(t) + D(f)(t) + F(f)(t), t ∈ [0, b].

The operators B,D and F satisfy the following regularity conditions.

Lemma 4.1. The operator B is weakly sequentially continuous.

Proof. Let {qn} ⊂ C([0, b];E) be such that qn ⇀ q. From the weak convergence it follows
that there exists a constant r > 0 such that ‖qn‖0 < r for every n ∈ N and qn(t) ⇀ q(t)
for every t ∈ [0, b]. Then by the weak sequential continuity of the functions Ik, we have that
Ik(qn(tk)) ⇀ Ik(q(tk)) for any k = 1, . . . , N. Thus, according to Lemma 2.1, φk(qn)(t) ⇀
φ(q)(t) for every t > tk and B(qn)(t) ⇀ B(q)(t) for every t ∈ [0, b]. Moreover, (Ik) (ii) yields
the existence of R > 0 such that

‖Ik(qn(tk))‖ ≤ R

for every k = 1, .., N and n ∈ N. Notice that

‖φ3(qn)(t)‖ ≤ D(‖φ2(qn)(t3)‖+R) ≤ D[D(‖φ1(qn)(t2)‖+R) +R]
≤ D[D(DR+R) +R] ≤ DR(D + 1)2.

Hence, reasoning by induction, we get that ‖φk(qn)(t)‖ ≤ DR(D+1)k−1 for every t > tk, k =
1, ..., N and n ∈ N. Thus

‖B(qn)(t)‖ ≤ DR(D + 1)N−1 (4.9)

for every t ∈ [0, b] and n ∈ N, implying the weak convergence of B(qn) to B(q) in C([0, b];E).
2
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Lemma 4.2. The operators D and F are linear and bounded.

Proof. The linearity follows from the linearity of the integral operator and from Lemma 2.1.
We now prove the boundedness. For every τ1, τ2 ∈ [0, b] we have(∫ τ2

τ1

(
(τ2 − s)α−1

) p
p−1 ds

) p−1
p

≤
[
p− 1

αp− 1

] p−1
p

b
α− 1

p . (4.10)

Thus, from Hölder inequality and Lemma 2.1, we get for any f ∈ Lp([0, b];E) and τ1, τ2 ∈
[0, b] ∥∥∥∥∥

∫ τ2

τ1

(τ2 − s)α−1Tα(τ2 − s)f(s) ds

∥∥∥∥∥ ≤ Dα

Γ(1 + α)

[
p− 1

αp− 1

] p−1
p

b
α− 1

p ‖f‖p.

Denoting by

H :=
Dα

Γ(1 + α)

[
p− 1

αp− 1

] p−1
p

b
α− 1

p , (4.11)

it follows that ‖rk(f)(t)‖ ≤ DH(D + 1)k−1‖f‖p for every t > tk and k = 1, ..., N, hence for
every t ∈ [0, b] we obtain

‖D(f)(t)‖ ≤ DH(D + 1)N−1‖f‖p (4.12)

and
‖F(f)(t)‖ ≤ H‖f‖p (4.13)

for every f ∈ Lp([0, b];E) and the thesis is proved. 2

5 Existence results

Consider the multioperator Ψ : C([0, b];E) ( C([0, b];E) defined as

Ψ(q) = {x ∈ C([0, b];E) : x = A(·)ω + B(q) + D(f) + F(f) : ω ∈M(q), f ∈ Pf (q)}.

Then the fixed points of Ψ are mild solutions of problem (1.1). Now we can state the main
result of the paper.

Theorem 5.1. Under assumptions (A), (F1), (F2), (F3′), (M) and (Ik) the problem (1.2)-
(1.3) has at least one mild solution.

To prove the Theorem 5.1 we show that the multioperator Ψ satisfies all the hypotheses
of the Fixed Point Theorem 2.1. For the reader’s convenience we split the proof of the
regularity conditions satisfied by the multioperator Ψ in three propositions.

Proposition 5.1. The multioperator Ψ is weakly sequentially closed.

Proof. Let {qn} ⊂ C([0, b];E) and {xn} ⊂ C([0, b];E) satisfying xn ∈ Ψ(qn) for all n, qn ⇀ q
and xn ⇀ x in C([0, b];E). We will prove that x ∈ Ψ(q).
The fact that xn ∈ Ψ(qn) means that there exist a sequence {fn}, with fn ∈ PF (qn), and a
sequence {ωn}, with ωn ∈M(qn), such that

xn = A(·)ωn + B(qn) + D(fn) + F(fn).

12



From Lemma 4.1 we get that Bqn ⇀ Bq in C([0, b];E).
Moreover, by the weak convergence of the sequence {qn} in C([0, b];E), it follows that there
exists a constant r > 0 such that ‖qn‖0 < r for every n ∈ N and qn(t) ⇀ q(t) for every
t ∈ [0, b]. Therefore, according to (F3), there exists µr ∈ Lp([0, b];R+) with p > 1

α , such that
‖fn(t)‖ ≤ µr(t) for a.a. t and every n ∈ N, i.e. {fn} is integrably bounded. By the reflexivity
of the space Lp([0, b];E), we have the existence of a subsequence, denoted as the sequence,
and a function g such that fn ⇀ g in Lp([0, b];E). Lemma 4.2 implies that D(fn) ⇀ D(g)
and F(fn) ⇀ F(g) in C([0, b];E).
The operator M maps bounded sets into bounded sets and it is weakly sequentially closed,
hence, up to subsequence, wn ⇀ w in E, with w ∈M(x) and there exists L > 0 such that

‖ωn‖ ≤ L

for every n ∈ N.
Notice finally that, again from Lemma 2.1, ψk(t)ωn ⇀ ψk(t)ω and ‖ψk(t)‖ ≤ Dk for every
t ∈ (tk−1, tk] and k = 1, ..., N + 1. Thus A(t)ωn ⇀ A(t)ω and, since D ≥ 1,

‖A(t)ωn‖ ≤ (DN+1 + 1)L (5.1)

for every t ∈ [0, b], yielding that A(·)ωn ⇀ A(·)ω in C([0, b];E).
So, we have

xn ⇀ A(·)ω + Bq + Dg + Fg =: x,

and thus, by the uniqueness of the weak limit, we obtain that x = x.
To conclude, we have only to prove that g(t) ∈ F (t, q(t)) for a.a. t ∈ [0, b].
To this aim, by Mazur’s convexity theorem (see e.g. [11]) we have a sequence

f̃n =

hn∑
i=0

λnifn+i, λni ≥ 0,

hn∑
i=0

λni = 1

satisfying f̃n → g in L1([0, b];E), thus, up to subsequence, there is Ω0 ⊂ [0, b] with Lebesgue
measure zero such that f̃n(t)→ g(t) for all t ∈ [0, b]\Ω0 (see [27, Chapter IV, Theorem 38]).
With no loss of generality we can also assume that F (t, ·) : E ( E is weakly sequentially
closed and sup

‖x‖≤r
‖F (t, x)‖ ≤ µr(t) for every t 6∈ Ω0.

We now prove, by contradiction that g(t0) ∈ F (t0, q(t0)) for every t0 /∈ Ω0. By the reflexivity
of the space E and (F3) the restriction FrB(t0, ·) of the multimap F (t0, ·) on the set rB
is weakly compact. Hence, we have that FrB(t0, ·) is a weakly closed multimap and by
[16, Theorem 1.1.5] it is weakly u.s.c. Since ‖q(t0)‖ ≤ lim infn→∞ ‖qn(t0)‖ ≤ r and since
FrB(t0, q(t0)) is closed and convex, from the Hahn–Banach theorem it follows that there is
a weakly open convex set V ⊃ FrB(t0, q(t0)) satisfying g(t0) /∈ V w

. Being FrB(t0, ·) weakly
u.s.c., we can also find a weak neighborhood V1 of q(t0) such that FrB(t0, y) ⊂ V for all
y ∈ V1 with ‖y‖ ≤ r. Notice that ‖qn(t0)‖ ≤ r for all n. The convergence qn(t0) ⇀ q(t0) as
n→∞ then implies the existence of n0 ∈ N such that qn(t0) ∈ V1 for all n > n0. Therefore
fn(t0) ∈ FrB(t0, qn(t0)) ⊂ V for all n > n0. The convexity of V implies that f̃n(t0) ∈ V for all
n > n0 and, by the convergence, we arrive to the contradictory conclusion that g(t0) ∈ V w

.
We obtain that g(t) ∈ F (t, q(t)) for a.a. t ∈ [0, b]. 2
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Proposition 5.2. The multioperator Ψ is weakly compact.

Proof. By the Eberlein Smulian theorem (see [17, Theorem 1, p. 219]) it is sufficient to
prove that Ψ is weakly sequentially compact.
Let {qn} ⊂ C([0, b];E) be a bounded sequence and {xn} ⊂ C([0, b];E) satisfy xn ∈ Ψ(qn) for
all n. By the definition of the multioperator Ψ, there exist a sequence {fn}, with fn ∈ PF (qn),
and a sequence {ωn}, with ωn ∈M(qn), such that

xn = A(·)ωn + B(qn) + D(fn) + F(fn).

Reasoning as in Proposition 5.1, we have that there exists a subsequence, denoted as the
sequence {fn}, and a function g such that fn ⇀ g in Lp([0, b];E). Moreover, since M maps
bounded sets into bounded sets and {qn} is bounded, we obtain that, up to subsequence,
ωn ⇀ ω ∈ E as n→∞. Therefore

xn ⇀ x := A(·)ω + Bq + Dg + Fg,

in C([0, b];E), i.e. Ψ is weakly sequentially compact, and the assertion is proved. 2

Proposition 5.3. The multioperator Ψ has convex and weakly compact values.

Proof. Fix q ∈ C([0, b];E). Since F and M are convex valued, the set Ψ(q) is convex from the
linearity of Sα(t) for every t ∈ [0, b] and of the operators D and F. The weak compactness
of Ψ(q) follows from Propositions 5.1 and 5.2. 2

We are able now to prove the Theorem 5.1.

Proof. Fix n ∈ N, consider Qn the closed ball of radius n of C([0, b];E) centered at the origin.
We show that there exists n ∈ N such that the operator Ψ maps the ball Qn into itself.
According to (3.2), there exists a subsequence, still denoted as the sequence {ϕn}, such that

lim
n→∞

1

n

{∫ b

a
|ϕn(s)|p ds

} 1
p

= 0. (5.2)

Assume to the contrary, that there exist two sequences {qn} and {xn} such that qn ∈ Qn,
xn ∈ Ψ(qn) and xn /∈ Qn for all n ∈ N. By the definition of Ψ, there exist a sequence {fn},
with fn ∈ PF (qn), and a sequence {ωn}, with ωn ∈M(qn), such that

xn = A(·)ωn + Bqn + Dfn + Ffn.

From the assumption xn /∈ Qn, according to (5.1), (4.9), (4.12) and (4.13) and recalling that
‖ωn‖ ≤ ‖M(qn)‖, we must have, for any n,

n < ‖xn‖0 ≤ (DN+1+1)‖M(qn)‖+D(D+1)N−1 max
k=1,...N

‖Ik(qn(tk))‖+[D(D+1)N−1+1]H‖fn‖p,

where H is defined in (4.11). Moreover qn ∈ Qn implies, by (F3′), that ‖fn(t)‖ ≤ ϕn(t) for
a.a. t ∈ [0, b], hence ‖fn‖p ≤ ‖ϕn‖p. Consequently

n < (DN+1 + 1)‖M(qn)‖+D(D + 1)N−1 max
k=1,...N

‖Ik(qn(tk))‖+ [D(D + 1)N−1 + 1]H‖ϕn‖p.
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Therefore

1 < (DN+1+1)
‖M(qn)‖

n
+D(D+1)N−1 maxk=1,...,N ‖Ik(qn(tk))‖

n
+[D(D+1)N−1+1]H

‖ϕn‖p
n

.

Notice that if {qn} is bounded, then

lim
n→∞

‖M(qn)‖
n

= 0,

because M maps bounded sets into bounded sets.
If lim sup

n→∞
‖qn‖0 = +∞, by (3.1) we have

lim sup
n→∞

‖M(qn)‖
n

≤ lim sup
n→∞

‖M(qn)‖
‖qn‖0

≤ lim
‖u‖0→∞

‖M(u)‖
‖u‖0

= l <
1

DN+1 + 1
.

So, in both cases

lim sup
n→∞

‖M(qn)‖
n

<
1

DN+1 + 1
.

Moreover, fix k ∈ {1, ..., N}. If ‖qn(tk)‖ is bounded, then, since Ik maps bounded sets into
bounded sets for any k = 1, . . . , N , it follows

lim
n→∞

‖Ik(qn(tk))‖
n

= 0.

If lim sup
n→∞

‖qn(tk)‖ = +∞, by (Ik) (iii) we have

lim
n→∞

‖Ik(qn(tk))‖
n

≤ lim
n→∞

‖Ik(qn(tk))‖
‖qn(tk)‖

≤ lim
‖c‖→∞

‖Ik(c)‖
‖c‖

= 0.

In conclusion

lim
n→∞

maxk=1,...N ‖Ik(qn(tk))‖
n

= 0.

Hence, by (5.2),

1 ≤ lim sup
n→∞

[
(DN+1 + 1)

‖M(qn)‖
n

+D(D + 1)N−1 maxk=1,...,N ‖Ik(qn(tk))‖
n

+

[D(D + 1)N−1 + 1]H
‖ϕn‖p
n

]
< 1,

giving the contradiction.
Now, fix n ∈ N such that Ψ(Qn) ⊆ Qn. By Proposition 5.2 the set Vn = Ψ(Qn)

w
is a weakly

compact set. Let Wn = co(Vn), where co(Vn) denotes the closed convex hull of Vn. By the
Krein-Smulian theorem (see [9, p. 434]) Wn is weakly compact. Moreover from the fact that
Ψ(Qn) ⊂ Qn and since Qn is a convex closed set we get Wn ⊂ Qn and hence

Ψ(Wn) = Ψ(co(Ψ(Qn))) ⊆ Ψ(Qn) ⊆ Ψ(Qn)
w

= Vn ⊂Wn.

Therefore from Proposition 5.1 and we obtain that the restriction of the multimap Ψ on Wn

is weakly closed and, hence, it is weakly u.s.c (see [16, Theorem 1.1.5]). The conclusion then
follows from Theorem 2.1. 2
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The next theorem shows that, when we investigate the existence of a solution for the Cauchy
problem, an existence result can be proved under weaker growth conditions on F and on Ik.

Theorem 5.2. Assume (A), (F1), and (F2). Moreover suppose that

(F3′′) there exists ϕ ∈ Lp([0, b];R), with p > 1
α , such that, for every x ∈ E and a.a. t ∈ [0, b],

‖F (t, x)‖ ≤ ϕ(t)(1 + ‖x‖).

(I ′k) the functions Ik : E → E, k = 1, . . . , N are weakly sequentially continuous and there
exists a constant m > 0 such that for every c ∈ E and k = 1, ..., N

‖Ik(c)‖ ≤ m‖c‖.

Then the problem
CDαx(t) ∈ Ax(t) + F (t, x(t)), for a.a. t ∈ [0, b], t 6= t1, . . . , tN
x(t+k ) = x(tk) + Ik(x(tk)), k = 1, . . . , N
x(0) = x0

has at least one mild solution.

Proof. According to (4.10) and the Hölder inequality, for every τ1, τ2 ∈ E and ϕ ∈
Lp([0, b], E), we have ∫ τ2

τ1

(τ2 − s)α−1ϕ(s)ds ≤
[
p− 1

αp− 1

] p−1
p

b
α− 1

p ‖ϕ‖p.

Denote
C := (DN+1 + 1)‖x0‖+ [D(D + 1)N−1 + 1]H‖ϕ‖p,

where H is defined in (4.11). Consider the function h : [0, b]× [0, b]× [0,∞)→ R defined as

h(t, s, `) =

{ e`(s−t)ϕ(s)
(t−s)1−α t > s

0 t ≤ s.

By Hölder inequality we have that

∫ t

0

e`(s−t)

(t− s)1−α ϕ(s)ds ≤ ‖ϕ‖p

∫ t

0

(
e`(s−t)

(t− s)1−α

) p
p−1

ds


p−1
p

.

Moreover, notice that∫ t

0

(
e`(s−t)

(t− s)1−α

) p
p−1

ds


p−1
p

≤

[∫ b

0

(
e−`r

r1−α

) p
p−1

dr

] p−1
p

,

where by the Lebesgue Dominate Convergence theorem the last integral tends to zero as `
goes to infinity. Thus, it is possibile to find two positive constants L and R such that[

D(D + 1)N−1m+
Dα

Γ(1 + α)

(
D(D + 1)N−1 + 1

)]
max
t∈[0,b]

∫ t

0

eL(s−t)

(t− s)1−α ϕ(s)ds := β < 1
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and
R ≥ C(1− β)−1.

Define
Q = {q ∈ C([0, b], E) : ‖q(t)‖ ≤ ReLt for all t ∈ [0, b]}.

It is clear that Q is bounded, convex and closed. For q ∈ Q consider

Ψ(q)(t) = A(t)x0 + B(q)(t) + D(f)(t) + F(f)(t), t ∈ [0, b],

with f ∈ Lp([0, b], E), f(s) ∈ F (s, q(s)) for a.a. s ∈ [0, b].
Notice that, from Lemma 2.1 and (I ′k), reasoning as to get (4.9), we obtain, for any q ∈
Q, k = 1, ..., N,

φk(q)(t) ≤ D(D + 1)k−1mReLtk ≤ D(D + 1)N−1mReLt

for every t > tk, thus
B(q)(t) ≤ D(D + 1)N−1mReLt

for every t ∈ E.
Moreover, from Lemma 2.1 and (F3′′) , we get for any q ∈ Q, f ∈ PF (q) and τ1, τ2 ∈ [0, b]∥∥∥∥∥
∫ τ2

τ1

(τ2 − s)α−1Tα(τ2 − s)f(s) ds

∥∥∥∥∥ ≤ Dα

Γ(1 + α)

∫ τ2

0
(τ2 − s)α−1‖f(s)‖ds

≤ Dα

Γ(1 + α)

∫ τ2

0
(τ2 − s)α−1ϕ(s)(1 + ‖q(s)‖)ds

≤ H‖ϕ‖p + Dα
Γ(1+α)e

Lτ2R

∫ τ2

0

eL(s−τ2)

(τ2 − s)1−α ϕ(s)ds

≤ H‖ϕ‖p +
Dα

Γ(1 + α)
eLτ2R max

t∈[0,b]

∫ t

0

eL(s−t)

(t− s)1−α ϕ(s)ds.

Then it easily follows that

‖rk(f)(t)‖ ≤ D(D + 1)k−1

[
H‖ϕ‖p +

Dα

Γ(1 + α)
eLtkR max

t∈[0,b]

∫ t

0

eL(s−t)

(t− s)1−α ϕ(s)ds

]

≤ D(D + 1)N−1

[
H‖ϕ‖p +

Dα

Γ(1 + α)
eLtR max

t∈[0,b]

∫ t

0

eL(s−t)

(t− s)1−α ϕ(s)ds

]

for every t > tk and k = 1, ..., N, hence

‖D(f)‖ ≤ D(D + 1)N−1

[
H‖ϕ‖p +

Dα

Γ(1 + α)
eLtR max

t∈[0,b]

∫ t

0

eL(s−t)

(t− s)1−α ϕ(s)ds

]

and

‖F(f)(t)‖ ≤ H‖ϕ‖p +
Dα

Γ(1 + α)
eLtR max

t∈[0,b]

∫ t

0

eL(s−t)

(t− s)1−α ϕ(s)ds.
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Hence

‖Ψ(q)(t)‖ ≤ (DN+1 + 1)‖x0‖+D(D + 1)N−1mReLt + [D(D + 1)N−1 + 1]H‖ϕ‖p+
Dα

Γ(1 + α)
[D(D + 1)N−1 + 1]eLtR max

t∈[0,b]

∫ t

0

eL(s−t)

(t− s)1−α ϕ(s)ds

= C +ReLtβ

≤ R(1− β) +ReLtβ

≤ ReLt(1− β) +ReLtβ = ReLt,

yielding Ψ(Q) ⊆ Q. Now, since the proofs of Propositions 5.1, 5.2 and 5.3 rely on the integral
boundedness condition (F3), a weaker assumption than (F3′′), we can reason as at the end
of the proof of Theorem 5.1, obtaining the claimed result. 2

6 A fractional nonlocal diffusion process

To demonstrate the effectiveness of the theoretical results proved in the previous Section,
we consider the following nonlocal diffusion process:

Dα
t u = ∆u+

[
f1

(
t, x,

∫
Ω
k1(x, ξ)u(t, ξ) dξ

)
, f2

(
t, x,

∫
Ω
k2(x, ξ)u(t, ξ) dξ

)]
ψ(t, x), (6.1)

with t ∈ [0, b], t 6= tk, k = 1, . . . , N, x ∈ Ω, where Ω is a nonempty domain in Rn, with
impulses

u(t+k , x) = u(tk, x) + ck, k = 1, ..., N, x ∈ Ω (6.2)

and subjected to the boundary conditions

u(t, x) = 0, t ∈ [0, b], x ∈ ∂Ω

u(0, x) =
∑J

i=1 αiu(si, x), x ∈ Ω, s1 ≤ 0 < · · · < sJ ≤ b.
(6.3)

We assume the following hypotheses:

(k) ki(x, ·) ∈ L2(Ω,R), with ‖ki(x, ·)‖2 ≤ 1, i = 1, 2, for almost all x ∈ Ω

(ψ) ψ : [0, b] × Ω → R is measurable with ψ(t, ·) ∈ L2(Ω;R) for a.a. t ∈ [0, b] and there
exists V > 0 such that ‖ψ(t, ·)‖2 ≤ V for almost all t ∈ [0, b];

(f1) functions f1, f2 : [0, b] × Ω × R → R are such that for each y ∈ L2(Ω,R) there is a
measurable function z : [0, b]×Ω→ R such that for almost all t ∈ [0, b] the inequalities

f1

(
t, x,

∫
Ω
k1(x, ξ)y(ξ) dξ

)
≤ z(t, x) ≤ f2

(
t, x,

∫
Ω
k2(x, ξ)y(ξ) dξ

)
hold for almost all x ∈ Ω;

(f2) for almost all t ∈ [0, b] and for almost all x ∈ Ω the function f1(t, x, ·) : R→ R is lower
semicontinuous and the function f2(t, x, ·) : R→ R is upper semicontinuous;

18



(f3) there exists ϕ ∈ Lp([0, b], [0,∞)), with p > 1
α and a non decreasing function µ :

[0,∞)→ [0,∞) such that for every t ∈ [0, b], almost all x ∈ Ω and each r > 0

|fi(t, x, r)| ≤ ϕ(t)µ(|r|) i = 1, 2,

with

lim inf
r→∞

µ(r)

r
= 0; (6.4)

(α) αi ∈ R \ {0} satisfy
∑n

i=1 |αi| <
1
2 .

We consider problem (6.1)-(6.2)-(6.3) in the state space E = L2(Ω;R). In order to apply
Theorem 5.1 we note that the linear operator A : D(A) ⊂ E → E defined by{

D(A) = {y ∈W 1,2
0 (Ω;R), ∆y ∈ L2(Ω;R)},

Ay = ∆y, y ∈ D(A),

generates a strongly continuous semigroup of contractions in E (see e.g. [31] Theorem 4.1.2).
For y ∈ E we define F (t, y) as the set of all functions g ∈ E satisfying g(x) = h(x)ψ(t, x),
with h : Ω→ R a measurable function such that

h(x) ∈
[
f1

(
t, x,

∫
Ω
k1(x, ξ)y(ξ) dξ

)
, f2

(
t, x,

∫
Ω
k2(x, ξ)y(ξ) dξ

)]
(6.5)

for almost all x ∈ Ω. According to (k) and the Hölder inequality we have for a.a. x ∈ Ω and
every y ∈ E, that∣∣∣∣∫

Ω
ki(x, ξ)y(ξ)dξ

∣∣∣∣≤ ∫
Ω
|ki(x, ξ)||y(ξ)|dξ ≤ ‖k(x, ·)‖2‖y‖2 ≤ ‖y‖2, i = 1, 2.

Thus, for y ∈ E denoting with P iy : Ω→ R the map

P iy(x) =

∫
Ω
ki(x, ξ)y(ξ)dξ, i = 1, 2,

(f3) implies, for every t ∈ [0, b], for a.a. x ∈ Ω and every y ∈ E, that

|fi
(
t, x, P iy(x)

)
| ≤ ϕ(t)µ

(∣∣P iy(x)
∣∣) ≤ ϕ(t)µ(‖y‖2), i = 1, 2.

Hence, for every g ∈ F (t, y), we get

‖g‖2 ≤ ‖ψ(t, ·)‖2 ϕ(t)µ(‖y‖2),

obtaining that F : [0, b] × E ( E is well defined. With this definition of F we can rewrite
(6.1)-(6.2)-(6.3) in the abstract form (1.2)-(1.3) with Ik : E → E, Ik(y) ≡ ck and M :
C([0, b];E)→ E defined as M(w)(x) =

∑n
i=1 αiw(si)(x) for a.a. x ∈ Ω. We verify now that

all hypotheses of Theorem 5.1 are satisfied.
First of all notice that by (6.4) and (ψ) it follows

lim inf
n→∞

1

n

∫ b

0
‖ψ(t, ·)‖2ϕ(t)µ(n)dt ≤ lim inf

n→∞
V
µ(n)

n
‖ϕ‖1 = 0,
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proving that the growth condition (F3′) is satisfied with ϕn(t) = V ϕ(t)µ(n), n ∈ N.
For every y ∈ E let z : [0, b] × Ω → R be the measurable function satisfying (f1). Now
v : [0, b]×Ω→ R defined as v(t, x) = z(t, x)ψ(t, x) is a measurable map. Since v(t, ·) ∈ E for
almost all t ∈ E, from [30, Theorem 4.4.2], we obtain that if v : [0, b]×Ω→ R is measurable
with v(t, ·) ∈ E for almost all t ∈ E then t 7→ v(t, ·) is measurable as a function from [0, b]
into E. Thus condition (F1) follows trivially.
Now we verify (F2). We fix a value t in [0, b] for which (f2) is satisfied and consider two
sequences {gn}, {yn} ⊂ E such that gn ⇀ g, yn ⇀ y in E and gn ∈ F (t, yn) for all n ∈ N,
i.e. gn(x) = hn(x)ψ(t, x) for a.a. x ∈ Ω, with hn satisfying (6.5). Notice that the weak
convergence of yn and (k) imply P iyn(x) → P iy(x) for all x ∈ Ω, i = 1, 2. Applying Mazur’s
convexity lemma, for each n there exist kn ∈ N and positive numbers δni, i = 0, 1, ..., kn such
that

∑kn
i=0 δni = 1 and the sequence {g̃n},

g̃n(x) :=

kn∑
i=0

δnign+i(x), x ∈ Ω

converges to g with respect to the norm of L2(Ω;R). Passing if necessary to a subsequence
we can assume that {g̃n} converges to g almost everywhere in Ω. Since

kn∑
i=0

δnif1(t, x, P 1
yn+i(x))ψ(t, x) ≤ g̃n(x) ≤

kn∑
i=0

δnif2(t, x, P 2
yn+i(t))ψ(t, x), for a.a. x ∈ Ω,

passing to the limit as n→∞ and according to (f2), we obtain that

f1(t, x, P 1
y (x))ψ(t, x) ≤ g(x) ≤ f2(t, x, P 2

y (x))ψ(t, x)

a.e. in Ω.
Thus, considering the map h : Ω→ R defined as

h(x) =

{
g(x)
ψ(t,x) x ∈ Ω such that ψ(t, x) 6= 0

z(t, x) x ∈ Ω such that ψ(t, x) = 0

where z : [0, b]×Ω→ R is the measurable function from (f1), we get that g(x) = h(x)ψ(t, x)
and so g ∈ F (t, y), proving that F is weakly sequentially closed.
Finally, it is easy to see that the multimap F has bounded, closed and convex values.
Moreover, the constant functions Ik, k = 1, ..., N are trivially sequentially continuous with
respect to the weak topology, map bounded sets into bounded ones and satisfy (3.2). Finally,
if
∑J

i=1 |αi| <
1
2 condition (M) is satisfied. Indeed M is a linear and bounded single valued

operator, hence it is a weakly sequentially closed multioperator. Furthermore for w ∈
C([0, b];E) we have

‖
∑J

i=1 αiw(si)‖2
‖w‖0

≤
∑J

i=1 |αi|‖w(si)‖2
‖w‖0

≤
‖w‖0

∑J
i=1 |αi|

‖w‖0
=

J∑
i=1

|αi|.

Hence

lim sup
‖w‖0→∞

‖
∑J

i=1 αiw(si)‖2
‖w‖0

≤
J∑
i=1

|αi| <
1

2
.

Thus all the assumptions of Theorem 5.1 are satisfied and the existence of a solution u ∈
C([0, b];L2(Ω;R)) of (6.1)-(6.2)-(6.3) is proved.
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Remark 6.1. We point out the fact that in order to obtain the existence of at least one
solution of (6.1) we do not need any measurability assumption on the map fi(·, ·, r), r ∈ R,
but only the much weaker hypothesis (f1).

Remark 6.2. The problem (6.1) is quite general, it includes the case of unbounded domains
Ω and as a nonlinear term an interval between two different values, that can represent the
range of a nonlocal forcing term acting on the process and that is the most natural example
of a multivalued map. This is due to the fact that with our approach we can handle the case
of a non compact semigroup generated by the linear part and at the same time non compact
valued multimaps.
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