Facioscapulohumeral muscular dystrophy (FSHD) has been associated with the genetic and epigenetic molecular features of the CpG-rich D4Z4 repeat tandem array at 4q35. Reduced DNA methylation of D4Z4 repeats is considered part of the FSHD mechanism and has been proposed as a reliable marker in the FSHD diagnostic procedure. We considered the assessment of D4Z4 DNA methylation status conducted on distinct cohorts using different methodologies. On the basis of the reported results we conclude that the percentage of DNA methylation detected at D4Z4 does not correlate with the disease status. Overall, data suggest that in the case of FSHD1, D4Z4 hypomethylation is a consequence of the chromatin structure present in the contracted allele, rather than a proxy of its function. Besides, CpG methylation at D4Z4 DNA is reduced in patients presenting diseases unrelated to muscle progressive wasting, like Bosma Arhinia and Microphthalmia syndrome, a developmental disorder, as well as ICF syndrome. Consistent with these observations, the analysis of epigenetic reprogramming at the D4Z4 locus in human embryonic and induced pluripotent stem cells indicate that other mechanisms, independent from the repeat number, are involved in the control of the epigenetic structure at D4Z4.

Does DNA Methylation Matter in FSHD? / Salsi, Valentina; Magdinier, Frédérique; Tupler, Rossella. - In: GENES. - ISSN 2073-4425. - 11:3(2020), pp. 258-277. [10.3390/genes11030258]

Does DNA Methylation Matter in FSHD?

Salsi, Valentina;Magdinier, Frédérique;Tupler, Rossella
2020

Abstract

Facioscapulohumeral muscular dystrophy (FSHD) has been associated with the genetic and epigenetic molecular features of the CpG-rich D4Z4 repeat tandem array at 4q35. Reduced DNA methylation of D4Z4 repeats is considered part of the FSHD mechanism and has been proposed as a reliable marker in the FSHD diagnostic procedure. We considered the assessment of D4Z4 DNA methylation status conducted on distinct cohorts using different methodologies. On the basis of the reported results we conclude that the percentage of DNA methylation detected at D4Z4 does not correlate with the disease status. Overall, data suggest that in the case of FSHD1, D4Z4 hypomethylation is a consequence of the chromatin structure present in the contracted allele, rather than a proxy of its function. Besides, CpG methylation at D4Z4 DNA is reduced in patients presenting diseases unrelated to muscle progressive wasting, like Bosma Arhinia and Microphthalmia syndrome, a developmental disorder, as well as ICF syndrome. Consistent with these observations, the analysis of epigenetic reprogramming at the D4Z4 locus in human embryonic and induced pluripotent stem cells indicate that other mechanisms, independent from the repeat number, are involved in the control of the epigenetic structure at D4Z4.
2020
11
3
258
277
Does DNA Methylation Matter in FSHD? / Salsi, Valentina; Magdinier, Frédérique; Tupler, Rossella. - In: GENES. - ISSN 2073-4425. - 11:3(2020), pp. 258-277. [10.3390/genes11030258]
Salsi, Valentina; Magdinier, Frédérique; Tupler, Rossella
File in questo prodotto:
File Dimensione Formato  
genes-11-00258.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1202111
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 21
social impact