The purpose of this paper is twofold. On one hand, we want to describe from a new graph theory perspective the self-assembly of DNA structures with branched junction molecules having flexible arms. On the other hand, we employ edge-colorings and graph decompositions to study the well-known problem of determining the minimum number of bond-edge types and tile types, which are graph invariants appearing in this context. We provide a strategy that can be applied to arbitrary graphs for obtaining upper bounds for these graph invariants.
On the minimum number of bond-edge types and tile types: An approach by edge-colorings of graphs / Bonvicini, S.; Ferrari, MARGHERITA MARIA. - In: DISCRETE APPLIED MATHEMATICS. - ISSN 0166-218X. - 277:(2020), pp. 1-13. [10.1016/j.dam.2019.09.004]
On the minimum number of bond-edge types and tile types: An approach by edge-colorings of graphs
Bonvicini S.
;FERRARI, MARGHERITA MARIA
2020
Abstract
The purpose of this paper is twofold. On one hand, we want to describe from a new graph theory perspective the self-assembly of DNA structures with branched junction molecules having flexible arms. On the other hand, we employ edge-colorings and graph decompositions to study the well-known problem of determining the minimum number of bond-edge types and tile types, which are graph invariants appearing in this context. We provide a strategy that can be applied to arbitrary graphs for obtaining upper bounds for these graph invariants.File | Dimensione | Formato | |
---|---|---|---|
coloring_DNA_171218_accepted.pdf
Open access
Descrizione: Articolo principale
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
623.95 kB
Formato
Adobe PDF
|
623.95 kB | Adobe PDF | Visualizza/Apri |
VOR_Ontheminimumnumberofbond-edge.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
508.63 kB
Formato
Adobe PDF
|
508.63 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris