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Abstract

The purpose of this paper is twofold. On one hand, we want to
describe from a new graph theory perspective the self-assembly of DNA
structures with branched junction molecules having flexible arms. On
the other hand, we employ edge-colorings and graph decompositions to
study the well-known problem of determining the minimum number of
bond-edge types and tile types, which are graph invariants appearing
in this context. We provide a strategy that can be applied to arbitrary
graphs for obtaining upper bounds for these graph invariants.
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1 Introduction.

This paper deals with a graph theory problem related to the self-assembly
of DNA structures. These constructs may have applications which include
molecular scaffolding and drug delivery [16, 18, 21].

Several techniques that are based on the Watson-Crick complementary
properties of DNA strands have been developed in order to obtain the self-
assembly. For instance, the origami method [17], the brick method [13, 14]
as well as flexible and rigid tiling [8, 10]. Here, we consider the method based
on branched junction molecules (with flexible arms) [18], which are “star-
like” molecules formed by several arms of DNA flanking a branch point.
Each arm is, in the simplest case, a double strand of DNA where one strand
extends further than the other and forms an adhesion site at the end of the
arm called a cohesive-end. Each cohesive-end is an unsatisfied sequence of
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e Reggio Emilia, via Campi 213/b, 41126 Modena (Italy).
†Department of Mathematics and Statistics, University of South Florida, Tampa, FL

33620.

1



nitrogenous bases (A’s, T’s, C’s, G’s) and branched junction molecules hav-
ing arms with complementary cohesive-ends can join together and form a
larger complex. Following [3, 12], we assume that the arms of the molecules
are flexible, so that all arms are allowed to move in any direction and all com-
plementary cohesive-ends can bond together. Branched junction molecules
with rigid arms are considered in, for example, [6, 11]; rigid arms carry ge-
ometric constraints that may impede two complementary cohesive-ends to
bond together.
A complex assembled from branched junction molecules with flexible arms
can be modeled by a graph allowing loops, multiple edges and half-edges: a
vertex of degree k represents a branched junction molecule with k arms, and
two vertices have a number of edges between them that is equal to the num-
ber of connections between the corresponding branched junction molecules.
Recall that a half-edge of a graph consists of exactly one vertex and every
edge uv can be thought as the join of the half-edges (u, uv), (v, uv) that
are incident to u, v, respectively. In the language of graphs, a branched
junction molecule is called a tile and is represented by a vertex with la-
beled half-edges [3, 4, 5, 11, 12]. The labels represent the cohesive-end and
belong to a set {a, â : a ∈ Σ}, where Σ is a finite set of symbols, and com-
plementary cohesive-end are denoted by hatted and unhatted copies of the
same letter, so that ˆ̂a = a for every a ∈ Σ, with a 6= â. Because the arms
of the molecules are assumed to be flexible, a tile can be specified by the
multiset consisting of the labels on its half-edges. Two tiles are of the same
tile type if they are represented by the same multiset. We can create an
edge between two tiles t and t′ if and only if t has a half-edge labeled by,
say a, and t′ has a half-edge labeled by â; the edge thus obtained is said
to be a bond-edge of type a (such an edge represents an attachment of the
molecules the tiles represent through arms with complementary cohesive-
ends). Figure 1 describes in short the join of branched junction molecules
with flexible arms and the corresponding representation by graphs. A struc-
ture assembled from branched junction molecules is a complete complex if it
has no branched junction molecule with unmatched cohesive-ends; thus in
the corresponding graph, called a complete complex by analogy, unmatched
half-edges are not allowed.

For a vertex v of a graph G – allowing loops, multiple edges and half-
edges – the set (or multiset) of its incident half-edges includes the half-edges
(v, uv), where uv is an edge of G joining the vertices u, v. A set of tile types,
called a pot, realizes a graph G if we can assign a tile type in the pot to
each vertex v of G and its incident half-edges in such a way that: (i) there
is a bijection between half-edges of v and labels of the corresponding tile
type; (ii) each edge receives both an unhatted and hatted copy of the same
letter on its half-edges [5, 3]. A target graph G is efficiently constructed if the
number of tile types or bond-edge types, in a pot realizing G, are minimized.
The problem of efficiently realizing a graph G leads to the definition of
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Figure 1: (a) A schematic representation of two branched junction molecules,
with three flexible arms, that are joined together by arms with complemen-
tary cohesive-ends. (b) The two molecules can be represented as vertices
with labeled half-edges, where half-edges correspond to the arms of the
molecules, labels correspond to the cohesive-ends (for instance, label a and
â correspond to the cohesive-ends “CCA” and “GGT”, respectively). (c)
We can join the two half-edges with labels a, â and form a bond-edge of
type a.

two new graph invariants, namely T (G) and B(G), that correspond to the
minimum number of tile types and bond-edge types, respectively, required to
realize G. Because in an experiment there is an arbitrarily large number of
each branched junction molecule, a pot that realizes a graph G may realize
other graphs as well, and graphs with fewer vertices are more likely to form
[12]. Hence, the problem of determining a pot with the minimum number
of tile types or bond-edge types needed to realize a graph G, is considered
under three different laboratory settings [3, 4]:

• Scenario 1. The pot realizing G is allowed to realize graphs of order
smaller than |V (G)|.

• Scenario 2. The pot realizes the graph G and no graph of order smaller
than |V (G)|.

• Scenario 3. The pot realizes the graph G and no graph of order smaller
than |V (G)| or having the same order as G but not isomorphic to G.

The problem is considered for graphs corresponding to complete com-
plexes, because from a pot realizing G it is always possible to obtain graphs
with unmatched half-edges and order smaller than |V (G)| (any tile corre-
sponds to an incomplete complex). Ellis-Monaghan et al. [3] provide specific
minimum values for T (G) and B(G) for common families of graphs, such as
trees, cycles, complete, bipartite and regular graphs, in these three scenar-
ios. Here, we address the problem using edge-colorings of graphs. In Section
2, we show that the problem can be related to some chromatic parameters
that are known in literature, such as the generalized chromatic index [7] and
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the palette index of a graph [9]. We show that these chromatic parameters
can be used to find upper and lower bounds for T (G) in the three scenarios
(see Propositions 4 and 5). In Section 4, we give an upper bound for the
parameter B(G) in Scenario 2 and 3; B(G) in Scenario 1 is determined in
Proposition 2. From the literature, no general strategy for computing T (G)
and B(G), where G is an arbitrary graph is known. Our approach holds
for arbitrary graphs and yields bounds for T (G) and B(G), which in turn
lead to alternative proofs of the findings in [3]. Moreover, we emphasize
that the techniques and the results presented here may improve the yields
of self-assembly experiments: by our approach we can efficiently construct
the target graph and avoid the assembly of undesired structures.

2 From edge-colorings to multi-palettes and tiles.

In this section we present the main definitions to describe the mathematical
model for representing the self-assembly by branched junction molecules
[3, 4, 5, 12]. Here, however, we introduce these notions in the setting of
edge-colorings. This enables us to establish a relation between the minimum
number of bond-edge types required to realize a graph G and the generalized
chromatic index of G [7]. We also show that the minimum number of tile
types needed to realize G is related to the palette index of a simple graph
[9].

In our notation, a graph G is connected and allows loops and multiple
edges. As remarked in Section 1, an edge uv ∈ E(G) can be represented
as the join of the half-edges (u, uv) and (v, uv) that are incident to u and
v, respectively. Throughout the paper, we will refer to the set of half-edges
constituting the edges of G as “the half-edges of G”. We denote by Pn the
path with n edges and n+ 1 vertices; by Cn the cycle of length n. We refer
to [1] for graph theory notation and terminology which are not explicitly
described in this paper.

Recall that an edge-coloring f : E(G)→ C of a graph G is an assignment
of colors to the edges of G. The edge-coloring is said to be proper if adjacent
edges receive distinct colors. If f uses k distinct colors, then we say that f
is a k-edge-coloring. For every color c in the color-set C of f and for every
vertex v ∈ V (G), we denote by f−1v (c) the number of edges of G that are
incident to v and are colored with c by f . By this definition, we can say
that an edge-coloring f defines at each vertex v ∈ V (G) a positive integer
mf (v) given by mf (v) = maxc∈C{f−1v (c)}. Notice that mf (v) ≤ d(v), where
d(v) is the degree of v in G. Moreover, f is proper if and only if mf (v) = 1
for every v ∈ V (G).

Let m : V (G) → Z+ be a function such that m(v) ≤ d(v) for every
v ∈ V (G). We say that f is an edge-coloring of type m if mf (v) ≤ m(v)
for every v ∈ V (G). We denote by χ′m(G) the smallest positive integer k
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for which a k-edge-coloring of type m exists for G. Notice that in [7] an
edge-coloring of type m is called a proper edge-coloring. To avoid misun-
derstanding with the classical definition of proper edge-coloring, we prefer
to adopt the terminology of edge-coloring of type m when m(v) 6= 1 for
at least one vertex v. Moreover, in [7] the parameter χ′m(G) is defined for
graphs that allows multiple edges but no loops (loops are allowed in our
definition). As in [7], the parameter χ′m(G) will be called the generalized
chromatic index of G.

An edge-coloring f of type m defines at each vertex v ∈ V (G) the multi-
set Pf (v) of colors of edges incident to v. Throughout the paper, a multiple
entry in a multiset will be denoted by the exponent to the corresponding ele-
ment; so if h ≥ 1 edges incident to v are colored by a, then we set ah ∈ Pf (v).
Notice that h ≤ m(v). The multiset Pf (v) will be called the multi-palette of
v with respect to f . We denote by Pf the set of distinct multi-palettes of f
and say that f has |Pf | multi-palettes. We define the multi-palette index of
G, denoted by šm(G), as the minimum number of multi-palettes taken over
the set of all possible edge-colorings of G of type m, that is,

šm(G) = min{|Pf | : f edge-coloring of G of type m}.

We give an example for illustrating the definition of edge-coloring of type
m, χ′m(G) and šm(G).

Example 1. In Figure 2(a) it is depicted a graph G having an edge-coloring
of type m, where m(vi) = 2 for every 1 ≤ i ≤ 5. The set Pf of distinct
multi-palettes of f consists of the following elements: Pf = {{a2, b2},{a2},
{a2, b}}, where Pf (v1) = {a2, b2}, Pf (v2) = Pf (v5) = {a2}, Pf (v3) =
Pf (v4) = {a2, b}. Since the degree-set of the graph has size 3, the multi-
palette index šm(G) is at least 3; by the cardinality of Pf , the multi-palette
index šm(G) is exactly 3. As for the generalized chromatic index χ′m(G), we
have χ′m(G) ≥ 2, since v1 has degree 4 and m(v1) = 2; by the edge-coloring f
in Figure 2(a) that uses exactly two colors, the generalized chromatic index
χ′m(G) is exactly 2.

The notions of multi-palette and multi-palette index appear here for the
first time and are a generalization of the notions of palette and palette index
of a simple graph that were introduced in [9]. In fact, given a simple graph
G we can consider its edge-colorings of type m with m(v) = 1 for every
v ∈ V (G). Then each multi-palette is a set and šm(G) = š(G), where š(G)
is the palette index of G.

If uv is an edge of G with f(uv) = a, then its half-edges (u, uv) and
(v, uv) can be labeled by a and â, respectively, or vice versa. As a conse-
quence, an edge-coloring f defines at each vertex v ∈ V (G) the multiset tf (v)
of labels of the half-edges incident to v, as follows: if uv is an edge of G with
f(uv) = a, then x ∈ tf (v) if and only if y ∈ tf (u), where {x, y} = {a, â}. We
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Figure 2: (a) A graph having an edge-coloring f of type m, where m(vi) = 2
for every 1 ≤ i ≤ 5; the vertices have the following multi-palettes with re-
spect to f : Pf (v1) = {a2, b2}, Pf (v2) = Pf (v5) = {a2}, Pf (v3) = Pf (v4) =
{a2, b}. (b)-(c) Two distinct labelings of the half-edges of the graph provid-
ing two distinct pots associated to f : {{a, â, b̂2}, {a, â}, {a, â, b}}} pot in
case (b); {{â2, b, b̂}, {a2}, {â2, b̂}, {a, â, b}} pot in case (c) (see Example 1).

call tf (v) the tile type of v with respect to f . Every labeling of the half-edges
of G defines a set Tf of distinct tile types which is associated to f ; the set
Tf will be called a pot associated to f and accordingly a vertex with labeled
half-edges will be called a tile with respect to f . Note that there might be
different pots associated to the same edge-coloring f , since we can label the
half-edges incident to a vertex v in different ways. A pot Tf associated to an
edge-coloring f is characterized by the property that for each label, say a,
that appears in any tile type t ∈ Tf there exists a label â (the complement
of a) that appears in some tile type t′ ∈ Tf (possibly t = t′), and vice versa.

Example 2. According to the edge-coloring f in Figure 2(a), we label the
two half-edges forming the edge v1v5 colored by a with the labels a and â.
Consequently, exactly one of the vertices incident to v1v5 has tile type with
respect to f containing the label a; the other vertex has tile type containing
the label â. Analogously, for the half-edges forming the remaining edges
colored with a and b by f .

The labeling in Figure 2(b) yields the following tile types with respect
to f : tf (v1) = {a, â, b̂2}, tf (v2) = tf (v5) = {â2}, tf (v3) = tf (v4) = {a, â, b};
whence the pot {{a, â, b̂2}, {a, â}, {a, â, b}}} which is associated to f .

The labeling in Figure 2(c) yields the following tile types with respect
to f : tf (v1) = {â2, b, b̂}, tf (v2) = tf (v5) = {a2}, tf (v3) = {â2, b̂}, tf (v5) =

{a, â, b}; whence the pot {{â2, b, b̂}, {a2}, {â2, b̂}, {a, â, b}} which is associ-
ated to f .

Any finite multiset of hatted and unhatted labels can be thought as a tile
type with respect to a suitable edge-coloring of a graph, for instance of the
star with as many edges as the number of labels in the multiset; the unhatted
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version of each label corresponds to a color. We will use the term tile type
to refer to a finite multiset of hatted and unhatted labels (that we interpret
as hatted and unhatted colors) and a vertex with labeled half-edges will
be simply called a tile. The definition of a “tile type” (respectively, “tile”)
generalizes that one of a “tile type of v with respect to f” (respectively, “tile
with respect to f”). We can thus generalize the notion of a “pot associated
to f” to that one of a pot, that is, any finite set T of tile types. By the
definition of “tile type”, each element of a pot can be viewed as a tile type
with respect to a suitable edge-coloring of a star having a suitable number
of edges. It might happen that no subset of the pot corresponds to a pot
associated to an edge-coloring f of a star or of any graph. We say that
a pot T realizes the graph G or, equivalently, that G can be constructed
from T , if T contains a pot associated to a suitable edge-coloring of G.
The definition of T realizing a graph G means that there exists a set of
tiles, whose tile type is in T , for which it is possible to match the half-edges
with complementary labels in such a way that the resulting graph is non-
empty, has no unmatched half-edges and is isomorphic to G. As remarked
in Section 1, a non-empty graph with no unmatched half-edges is called a
complete complex. Observe that, in a complete complex G, the number of
half-edges of G that are labeled by, say a, is equal to the number of half-edges
that are labeled by â.

Notice that the definitions of tile, tile type and pot introduced above
agree with the ones presented in [3, 4, 5, 12], but are obtained by a new
approach employing edge-colorings.

3 Preliminary results

Given a pot Tf associated to an edge-coloring f of G, the cardinality of Tf
represents the number of tile types that are used in the construction of G;
on the other hand, the colors of f or, equivalently, the labels appearing in
the elements of Tf (without distinction between hatted or not) correspond
to the bond-edge types used to realize G. For i = 1, 2, 3, let Bi(G) and Ti(G)
denote the minimum number of bond-edge types and tile types, respectively,
required to realize the graph G according to Scenario i. It is easy to see that
B1(G) ≤ B2(G) ≤ B3(G) and T1(G) ≤ T2(G) ≤ T3(G) [3]. In this section,
we provide some preliminary results for these parameters.

Proposition 1. A graph G can be constructed from k bond-edge types if
and only if there exists a k-edge-coloring of type m, where m is a suitable
function from V (G) to Z+ such that m(v) ≤ d(v) for every v ∈ V (G).

As a direct consequence of Proposition 1, we have the following results
for B1(G) and B2(G).
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Proposition 2. Let G be a graph. For i = 1, 2, 3, we have Bi(G) ≥ χ′m(G),
where m is a suitable function from V (G) to Z+ such that m(v) ≤ d(v) for
every v ∈ V (G). In particular, B1(G) = χ′m(G) = 1, where m(v) = d(v) for
every v ∈ V (G).

Proof. By definition of Bi(G), the graph G can be constructed from Bi(G)
bond-edge types, i = 1, 2, 3. By Proposition 1, there exists a Bi(G)-edge-
coloring of type m, where m is a suitable function from V (G) to Z+ such
that m(v) ≤ d(v) for every v ∈ V (G). By definition of χ′m(G), we have
Bi(G) ≥ χ′m(G). The edge-set of an arbitrary graph G can be colored by
just one color, that is, G has a 1-edge-coloring of type m, where m(v) = d(v)
for every v ∈ V (G). Whence χ′m(G) = 1 where m(v) = d(v) for every
v ∈ V (G). By Proposition 1, the graph G can be constructed from exactly
one bond-edge type. This is equivalent to say that B1(G) = χ′m(G) = 1,
where m(v) = d(v) for every v ∈ V (G).

The result B1(G) = 1 for every graph G has been also obtained in [3].

We recall that a spanning subgraph of a graphG is a subgraph ofG having
the same vertex-set as G. The following result will be used in Section 4.

Proposition 3. Let G be a graph and let G∗ be a spanning subgraph of G.
Then B2(G) ≤ B2(G

∗) + 1.

Proof. Set B2(G
∗) = k. By Proposition 1, there exists a k-edge-coloring

f1 of G∗. We denote by {a1, . . . , ak} the color-set of f1. By definition of
B2(G

∗), the edge-coloring f1 provides a pot Tf1 that realizes no graph of
order smaller than |V (G)|. We define a (k + 1)-edge-coloring f of G as
follows: if uv ∈ E(G∗), then we set f(uv) = f1(uv); if uv 6∈ E(G∗), then
we set f(uv) = ak+1, where ak+1 is a color not belonging to {a1, . . . , ak}.
For every v ∈ V (G) we set tf (v) = tf1(v) ∪ {aik+1, â

j
k+1}, where i, j are

non-negative integers such that i + j corresponds to the number of edges
in E(G) r E(G∗) that are incident to v. A pot Tf is thus defined. Since
each tile type of Tf contains a tile type of Tf1 and Tf1 realizes no graph of
order smaller than |V (G)|, then so does the pot Tf . It is thus proved that
B2(G) ≤ B2(G

∗) + 1.

Proposition 4. Let G be a graph and let f be an edge-coloring of G. For
every pot Tf associated to f , we have

|Pf | ≤ |Tf | ≤
∑
P∈Pf

2|P |.

Proof. By definition of tile type, every multi-palette of f gives rise to a tile
type. Since two elements of Pf differ on at least one color, they give rise to
distinct tile types. Therefore, |Pf | ≤ |Tf |. Every multi-palette P ∈ Pf can
be split into at most 2|P | tile types, since every color a ∈ P can be split into
the 2 labels a and â.
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Remark 1. If at least one multi-palette P contains repeated colors, then the
cardinality of Tf is smaller than

∑
P∈Pf

2|P |. As an example, if P = {a3},
then P cannot be split into 23 tile types, but it provides at most 4 distinct
tile types. Nevertheless, if no multi-palette of f contains repeated colors,
then the upper bound in Proposition 4 is tight. As an example, assume that
G is a cycle with an even number of vertices. We color alternately its edges
by the colors a and b. We obtain a proper edge-coloring f such that Pf
consists of the palette P = {a, b}. It is easy to verify that we can label the
half-edges of G so that the palette P can be split into exactly 22 tile types,
thus obtaining a pot Tf whose cardinality is

∑
P∈Pf

2|P | = 22.

Proposition 5. Let G be a graph. For i = 1, 2, 3, we have Ti(G) = |Tf | ≥
šm(G), where f is an edge-coloring of G of type m and m is a suitable
function m : V (G)→ Z+ such that m(v) ≤ d(v) for every v ∈ V (G).

Proof. By definition of Ti(G) and by Proposition 1, there exists an edge-
coloring f of G of type m, where m is a suitable function m : V (G) →
Z+ with m(v) ≤ d(v) for every v ∈ V (G), such that Ti(G) = |Tf |. By
Proposition 4 and by the definition of šm(G), we have Ti(G) = |Tf | ≥
|Pf | ≥ šm(G).

Lemma 1. Let G be a graph and let f be a B3(G)-edge-coloring of G pro-
viding a pot Tf realizing the graph G in Scenario 3. The following properties
hold:

(i) if G has no loops and there exists v ∈ V (G) such that ah ∈ Pf (v), with
h > 1, then tf (v) does not contain both labels a, â;

(ii) if G is simple and there exist u, v ∈ V (G) such that ah ∈ tf (u), âs ∈
tf (v), with h, s ≥ 1, then at least one of the integers h, s is 1;

(iii) if G is simple and there exist uu1, uu2, vv1, vv2 ∈ E(G) that are colored
by the same color, then for i = 1, 2 the edges uvi, vui 6∈ E(G);

(iv) if G has no loops and uv ∈ E(G), then tf (u) 6= tf (v).

Proof. We prove property (i). Suppose that tf (v) contains both labels a and
â. Let vv1, vv2 ∈ E(G) such that the half-edges (v, vv1), (v, vv2) are labeled
by a, â, respectively (v1, v2 are not necessarily distinct). The half-edges
(v1, vv1), (v2, vv2) are labeled by â, a, respectively. The pot Tf realizes the
graph K that can be obtained from G by removing the edges vv1, vv2 and by
adding the edges v1v2, vv, where vv is a loop incident to v (if v1 = v2, then
v1v2 is a loop). The graph K is not isomorphic to G, since G has no loops.
Moreover, |V (K)| = |V (G)|. That yields a contradiction, since Tf realizes
the graph G and satisfies the conditions in Scenario 3. Hence property (i)
holds.
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The proof of properties (ii), (iii) and (iv) is similar to the proof of
property (i) and will be omitted.

It is straightforward to see that the next statement is a consequence of
property (iv) of Lemma 1.

Corollary 1. T3(Kn) = n.

4 Bounds for B2(G) and B3(G) from graph decom-
positions.

We say that a graph G has a decomposition D, if D is a collection of sub-
graphs of G that partition the edge-set of G. Two graphs G1, G2 have the
same decomposition D, if there exists a decomposition Di of Gi, i = 1, 2,
and a one-to-one correspondence φ : D → Di that maps each subgraph
H ∈ D to a subgraph φ(H) ∈ Di such that H and φ(H) are isomorphic.
Graphs having the same decomposition are not necessarily isomorphic, see
for instance the graphs in Figure 3.

A decomposition D of a graph G defines a pot TfD which is associated
to an edge-coloring fD of G and realizes the graph G, as we are going to
explain. We color the elements of D by disjoint color-sets. For every H ∈ D,
we consider an edge-coloring fH of H with color-set CH and associated pot
TfH . The edge-coloring fD : E(G)→ ∪H∈DCH , defined by fD(e) = fH(e) if
e ∈ E(H), is an edge-coloring of G providing the pot TfD = {t1, . . . , tτ(D)},
where ti = tf (vi) = ∪ H∈D

vi∈V (H)
tfH (vi) for some vertex vi ∈ V (G), 1 ≤ i ≤

τ(D). We say that the edge-coloring fD and the associated pot TfD are
obtained by combining the edge-colorings fH and the associated pots TfH ,
where H ∈ D. A pot TfD arising from a decomposition D might realize
non-isomorphic graphs, see for instance the graphs in Figures 3 and 4 that
are considered in Examples 3 and 4, respectively.

The next proposition provides a method for constructing a pot realizing
a graph G and no graph of order smaller than |V (G)|, starting from a de-
composition D of G; hence it can be used to find an upper bound for B2(G).
For instance, for Hamiltonian graphs of order n it provides the upper bound
B2(G) ≤ dn/2e + 1 (see Corollary 4). Corollaries 2, 3, 5 and 6 show that
Proposition 6 has stronger implications, since it also gives the exact value
of B2(G) and B3(G) for some notable classes of graphs– cycles, complete
graphs and complete bipartite graphs.

The statement of Proposition 6 is as general as possible, that is, it em-
ploys a decomposition D into arbitrary subgraphs H, so that it can be
applied to any graph G; the subset D∗ ⊆ D plays the role of a subset of
subgraphs H whose union spans the graph G; the subset T ∗ is a selection
of tile types in each H ∈ D∗ that uniquely defines a partition of the tile
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types of the whole graph G. The upper bound obtainable from Proposition
6 depends from the choice of the subgraphs H and in view of reaching the
exact value of B2(G), it suggests to select the subgraphs H that make the
value of

∑
H∈D |Ch| as small as possible.

Some further notations are in order. If G can be constructed from a
pot T containing a pot associated to an edge-coloring f of G and for t ∈ T
there are exactly nt ≥ 0 vertices of V (G) having tile type t, then we denote
the corresponding multiset of tile types by Mf (G) = {tnt : t ∈ T , nt ≥ 0}.
Notice that

∑
t∈T nt = |V (G)|.

Let G and L be graphs that can be constructed from the same pot T
containing a pot associated to an edge-coloring of G (respectively, of L); for
simplicity, we denote both edge-colorings by f and set Mf (G) = {tnt : t ∈
T , nt ≥ 0}, Mf (L) = {tmt : t ∈ T ,mt ≥ 0}. We say that Mf (L) contains
λ ≥ 1 copies of Mf (G) if mt ≥ λ · nt for every t ∈ T .

Proposition 6. Let G be a connected graph having a decomposition D.
For every H ∈ D, let fH be an edge-coloring of H with color-set CH and
associated pot TfH . Let fD be the edge-coloring of G obtained by combining
the edge-colorings fH and let TfD = {ti : 1 ≤ i ≤ τ(D)} be the associated
pot obtained by combining the pots TfH .

Let D∗ ⊆ D and T ∗ ⊆ (∪H∈D∗TfH ) such that T ∗ ∩ TfH 6= ∅ for every
H ∈ D∗. Assume that D∗ and T ∗ define a partition of TfD into the subsets
At, where t ∈ T ∗ and each At consists of the tile types ti ∈ TfD containing
the tile type t ∈ T ∗. Moreover, the following conditions hold:

(0) no element of TfD can belong to more than one subset At, that is, if
ti ∈ At′, then ti contains no tile type t ∈ T ∗, t 6= t′;

(1) for every H ∈ D∗, if LH is a graph that can be constructed from TfH ,
then MfH (LH) contains λH ≥ 1 copies of MfH (H).

Then TfD realizes no graph of order smaller than |V (G)|. Whence B2(G) ≤∑
H∈D |CH |.

Proof. Let L be a graph that can be constructed from TfD . We prove
that |V (L)| ≥ |V (G)|. We set MfD(G) = {tni

i : ni ≥ 0, 1 ≤ i ≤ τ(D)},
MfD(L) = {tmi

i : mi ≥ 0, 1 ≤ i ≤ τ(D)} and denote by LH the subgraph of
L induced by the color-set CH . By the definition of TfD , we can set ni > 0 for
every ti ∈ TfD . Notice that L is the edge-disjoint union of the subgraphs LH .
Firstly, we show that LH is non-empty, for every H ∈ D. Suppose, on the
contrary, that LH is non-empty for every H ∈ D′, where D′ ⊂ D, whereas
LH is empty for every H ∈ DrD′. Hence L is the edge-disjoint union of the
graphs LH with H ∈ D′ and the tile types of its vertices are obtained from
the tile types of the vertices in ∪H∈D′V (H). Since L is a complete complex,
the tile types of its vertices contain no label coming from the color-sets CH
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with H ∈ D r D′. Therefore, the set ∪H∈D′V (H) is a non-empty proper
subset of V (G), since G has at least one vertex whose tile type with respect
to fD contains labels from the color-sets CH with H ∈ DrD′. Consequently,
the edge-disjoint union of the graphs H ∈ D rD′ is a subgraph of G corre-
sponding to a complete complex. WhenceG is disconnected, a contradiction.
Hence LH is non-empty for every H ∈ D. In particular, LH is non-empty for
every H ∈ D∗. For H ∈ D∗, we set MfH (H) = {tnH,t : t ∈ TfH , nH,t ≥ 0},
MfH (LH) = {tmH,t : t ∈ TfH ,mH,t ≥ 0}.

Since the subsets At, t ∈ T ∗, partition TfD , we can set |V (G)| =∑τ(D)
i=1 ni =

∑
t∈T ∗

∑
ti∈At

ni and |V (L)| =
∑τ(D)

i=1 mi =
∑

t∈T ∗
∑

ti∈At
mi.

By definition ofAt and property (0), the summations
∑

ti∈At
ni and

∑
ti∈At

mi

correspond to the number of vertices of G and L, respectively, whose tile
type tfD(v) = ti (for a suitable ti ∈ At, t ∈ T ∗) contains the tile type
t ∈ T ∗, where t ∈ TfH , for some H ∈ D∗. The number of vertices of G (re-
spectively, of L) whose tile types tfD(v) = ti contains t ∈ TfH , H ∈ D∗, cor-
responds to the number of vertices of H (respectively, of LH) having tile type
tfH (v) = t, since the multi-palettes of the vertices in V (G) r V (H) (respec-
tively, in V (L) r V (LH)) are disjoint from CH . Therefore, for every t ∈ T ∗,
with t ∈ TfH , H ∈ D∗, we have

∑
ti∈At

ni = nH,t and
∑

ti∈At
mi = mH,t.

Whence |V (G)| =
∑

t∈T ∗
H∈D∗

nH,t and |V (L)| =
∑

t∈T ∗
H∈D∗

mH,t. Since every

subgraph LH , H ∈ D∗, is non-empty and property (1) holds, the following
inequality holds: mH,t ≥ λH · nH,t ≥ nH,t for every H ∈ D∗. Consequently,
|V (G)| ≤ |V (L)|. It is thus proved that the pot TfD realizes the graph G and
no graph of order smaller than |V (G)|. Whence B2(G) ≤

∑
H∈D |CH |.

Property (1) of Proposition 6 implies that for every H ∈ D∗ the pot
TfH realizes the graph H and no graph of order smaller than |V (H)|. For
the graphs H ∈ D r D∗, the pot TfH might realize graphs that are not
isomorphic to H and, in particular, graphs of order smaller than |V (H)|.

In the following examples, we give an application of Proposition 6. In
Example 3, we exhibit a graph having a decomposition D consisting of cer-
tain subgraphs; for every H ∈ D we provide a pot TfH realizing the graph
H and no graph of order smaller than |V (H)|. We also show that the pot
TfD realizes graphs that are not isomorphic to G, but have the same order
as G and the same decomposition D. In Example 4, we exhibit a graph hav-
ing a decomposition D consisting of cycles C4, C6 and paths P4; for every
H ∈ D∗, where D∗ is a proper subset of D, we provide a pot TfH realizing
the graph H and no graph of order smaller than |V (H)|; for H ∈ D r D∗,
we provide a pot TfH realizing the graph H and graphs having order smaller
than |V (H)|. We also show that, in this case, the pot TfD realizes graphs
that are not isomorphic to G and have the same order as G, but not the
same decomposition D. This follows from the fact that the pot TfH , for
H ∈ D rD∗ realizes graphs whose order is smaller than |V (H)|.
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Example 3. The graph G in Figure 3(a) has a decomposition D into the
subgraphs Hi, 1 ≤ i ≤ 5, defined in Figure 3. We use the decomposition
D to define a pot TfD realizing the graph G and no graph of order smaller
than |V (G)| = 9. We color the subgraphs Hi by disjoint color-sets. For
i = 1, 2, 3, 5, we denote by fHi the edge-coloring of Hi that colors each edge
of Hi by color ai. We denote by fH4 the edge-coloring of H4 with color-set
{b1, b2, b3} that colors the edges incident to v5 by color b2; the remaining
edges incident to v4, v6 by color b1; and the edge v7v8 by b3. We can label the
half-edges of each Hi and define the pot TfHi

associated to the edge-coloring
fi as follows:

• TfH1
= {{a31}, {â31}}; TfH2

= {{a32}, {â2}}; TfH3
= {{a33}, {â23}, {â3}};

• TfH4
= {{b1, b2}, {b̂22}, {b̂1, b3}, {b̂1, b̂3}}; TfH5

= {{a25}, {â25}}.

It is easy to see that each pot TfHi
, 1 ≤ i ≤ 5, realizes the graph Hi and

no graph of order smaller than |V (Hi)|. Combining the pots TfHi
, we obtain

the pot TfD = {{â31, â2}, {â2, â23}, {â2, â3}, {a31, b1, b2}, {a32, b̂22}, {a33, b1, b2},
{b̂1, b3}, {b̂1, b̂3, a25}, {â25}} (see also Figure 3) that realizes the graph G. We
now prove that it realizes no graph of order smaller than |V (G)| = 9 by
showing that there exists a partition of TfD that satisfies properties (0) and
(1) of Proposition 6.

Set D∗ = {H2, H4, H5} and T ∗ = {{â2}, {b1, b2}, {b̂22}, {b̂1, b3}, {â25},
{a25}}. The elements of TfD can be partitioned into the following subsets At,
t ∈ T ∗:

• A{â2} = {{â31, â2}, {â2, â23}, {â2, â3}};

• A{b1,b2} = {{a31, b1, b2}, {a33, b1, b2}}; A{b̂22} = {{a32, b̂22}};

• A{b̂1,b3} = {{b̂1, b3}}; A{â25} = {{â25}}; A{a25} = {{b̂1, b̂3, a25}}.

Property (0) of Proposition 6 is easily satisfied: no element of TfD can
belong to more than one subset At.

An easy counting argument shows that for every H ∈ D∗, if LH can be
constructed from TfH , then MfH (LH) contains λH ≥ 1 copies of MfH (H).

For instance, for H = H4 we have MfH4
(H4) = {{b1, b2}2, {b̂22}1, {b̂1, b3}1,

{b̂1, b̂3}1} and we can set MfH4
(LH4)= {{b1, b2}m1 , {b̂22}m2 , {b̂1, b3}m3 ,

{b̂1, b̂3}m4 : mi ≥ 0, 1 ≤ i ≤ 4}. Since the number of half-edges in LH4

that are labeled by bi, i = 1, 2, 3, is equal to the number of half-edges in
LH4 that are labeled by b̂i, the following equalities hold: m1 = m3 + m4;
m1 = 2m2; m3 = m4. Whence m1 = 2m4 and m2 = m3 = m4, that
is, MfH4

(LH4) contains λH = m4 ≥ 1 copies of MfH4
(H4). Analogously,

for the graph LH that can be constructed from the pot TfH with H ∈ D∗,
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H 6= H4. Hence, property (1) of Proposition 6 is satisfied. Since Proposition
6 holds, B2(G) ≤ 7.

The pot TfD also realizes graphs that are not isomorphic to the graph in
Figure 3(a), for instance the graph in Figure 3(b). Notice that the graphs
in Figure 3 have the same decomposition D = {Hi : 1 ≤ i ≤ 5}.

H1 H2 H3 H4 H5

(a)â1
â1
â1

a1
a1

a1

â2

â2

â2

a2

a2

a2

a3

a3

â3â3

a3

b̂2

b̂2

b2

b2

b1 b̂1

b3

b̂3

b1 b̂1

a5

a5

â5

â5

(b)â1
â1
â1

a1
a1

a1

â2

â2

â2

a2

a2

a2

a3

a3

â3â3

a3

b̂2

b̂2

b2

b2

b1 b̂1

b3

b̂3

b1 b̂1

a5

a5

â5

â5

â3 â3

Figure 3: Two non-isomorphic graphs of order 9 having a decomposition D
into the subgraphs Hi, 1 ≤ i ≤ 5, that can be constructed from the same pot
TfD = {{â31, â2}, {â2, â23}, {â2, â3}, {a31, b1, b2}, {a32, b̂22}, {a33, b1, b2}, {b̂1, b3},
{b̂1, b̂3, a25}, {â25}} (see Example 3).

Example 4. The graph G in Figure 4(a) has a decomposition D into the
subgraphs Hi, i = 1, 2, 3, where H1 is a cycle C4; H2 is a path P4; and H3

is a cycle C6. We use the decomposition D to define a pot TfD realizing
the graph G and no graph of order smaller than |V (G)| = 9. We color the
subgraphs Hi by disjoint color-sets. We denote by fH1 the edge-coloring of
H1 that colors the edges incident to v1 by color a1 and the edges incident
to v2 by color a2; we denote by fH2 the edge-coloring of H2 that colors the
edges incident to v8 by color b2 and the remaining edges of H2 by color b1;
we denote by f3 the edge-coloring of H3 that colors the edges incident to
v3 and v6 by color c1 and the remaining edges of H3 by color c2. We can
label the half-edges of each Hi and define the pot TfHi

associated to the
edge-coloring fHi as follows:

• TfH1
= {{a21}, {â22}, {â1, a2}}; TfH2

= {{b1}, {b̂1, b2}, {b̂22}};

• TfH3
= {{c21}, {ĉ1, c2}, {ĉ1, ĉ2}}.

It is easy to see that the pot TfHi
, with i = 1, 2, realizes the graph Hi

and no graph of order smaller than |V (Hi)|. The pot TfH3
realizes the graph

H3 and graphs of order smaller than |V (H3)| (for instance, take a complete
graph K3 whose vertices have tile types {c21}, {ĉ1, c2}, {ĉ1, ĉ2}). Combin-
ing the pots TfHi

, we obtain the pot TfD = {{a21, ĉ1, c2}, {â1, a2, ĉ1, ĉ2},
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{â1, a2, ĉ1, c2}, {â22, ĉ1, ĉ2}, {b1, c21}, {b̂1, b2}, {b̂22}} (see also Figure 4) that
realizes the graph G. We now prove that it realizes no graph of order smaller
than |V (G)| = 9 by showing that there exists a partition of TfD that satisfies
properties (0) and (1) of Proposition 6.

Set D∗ = {H1, H2} and T ∗ = {{a21}, {â1, a2}, {â22}, {b1}, {b̂1, b2}, {b̂22}}.
The elements of TfD can be partitioned into the following subsets At, t ∈ T ∗:

• A{a21} = {{a21, ĉ1, c2}}; A{â1,a2} = {{â1, a2, ĉ1, c2}, {â1, a2, ĉ1, ĉ2}};

• A{â22} = {{â22, ĉ1, ĉ2}}; A{b1} = {{b1, c21}};

• A{b̂1,b2} = {{b̂1, b2}}; A{b̂22} = {{b̂22}}.

No element of TfD can belong to more than one subset At, hence property
(0) of Proposition 6 is satisfied. For every H ∈ D∗, if LH can be constructed
from TfH , then MfH (LH) contains λH ≥ 1 copies of MfH (H); the proof is
similar to the proof of Example 3 and will be omitted. Since Proposition 6
is satisfied, B2(G) ≤ 6.

The pot TfD also realizes the graph in Figure 4(b), which is not iso-
morphic to the graph in Figure 4(a). Notice that the collection D =
{H1, H2, H3}= {C4, P4, C6} partitions the edge-set of the graph in Figure
4(a), but does not partition the edge-set of the graph in Figure 4(b).

H2H1 H3

TfD = {{a21, ĉ1, c2}, {â22, ĉ1, ĉ2}, {b1, c21}, {â1, a2, ĉ1, c2}, {â1, a2, ĉ1, ĉ2}, {b̂1, b2}, {b̂22}}

(a) (b)

b̂2 b̂2
b2 b2

b̂1 b̂1

b1 b1

c2 ĉ2
ĉ1

c1

c1

ĉ1
ĉ2 c2

ĉ1

c1

c1

ĉ1a1

â1

a1

â1 a2

â2

â2

a2

b̂2 b̂2
b2 b2

b̂1 b̂1

b1 b1

a1 â1
ĉ1

c1

c1

ĉ1
a2 â2

ĉ1

c1

c1

ĉ1
a1

â2

c2

ĉ2
â1

a2
c2

ĉ2

Figure 4: Two graphs that can be constructed from the same pot TfD arising
from the decomposition D = {H1, H2, H3}= {C4, P4, C6} of the graph on
the left. The collection D = {C4, P4, C6} is not a decomposition for the
graph on the right (see Example 4).

In the next results we apply Proposition 6.
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Corollary 2.

B2(Kn) =

{
1 if n is even;
2 if n is odd.

B2(Km,n) =

{
1 if gcd(m,n) = 1;
2 if gcd(m,n) > 1.

Proof. Set V (Kn) = {vi : 1 ≤ i ≤ n} and consider the decomposition
D = {H1, H2}, where H1 is the star K1,n−1 with center v1 and H2 is the
complement of H1 in Kn, that is, H2 is the complete graph Kn−1 on the
vertices V (Kn)r {v1}. We consider the edge-coloring fH1 of H1 that colors
every edge with a1 and has TfH1

= {{an−11 }, {â1}} as an associated pot.
We color the edges of H2 with a2 6= a1, label the half-edges arbitrarily and
consider the resulting pot. Any tile type of a pot TfD , obtained from D by
combining TfH1

together with a pot associated to a coloring of H2 by color

a2, contains the label an−11 or â1. Therefore, by setting D∗ = {H1} and
T ∗ = TfH1

, Proposition 6 is satisfied; whence B2(Kn) ≤ 2.

It is easy to see that for even values of n, the pot T = {{an−1}, {a(n/2)−1,
ân/2}} realizes the graph Kn and no graph of order smaller than n; whence
B2(Kn) = 1 for even values of n. For odd values of n, B2(Kn) = 2. Suppose,
on the contrary, that B2(Kn) = 1 if n is odd, then there exists a 1-edge-
coloring f of Kn defining a pot Tf realizing no graph of order smaller than
n. We can set Tf = {{ai, ân−1−i} : i ∈ I}, where I is a suitable subset of
{0, . . . , n− 1}. For every i ∈ I, we denote by ni the number of vertices with
tile type {ai, ân−1−i}. Since the total amount of half-edges with label a is
equal to the total amount of half-edges with label â, the relation

∑
i∈I(n−

1− 2i)ni = 0 holds. Whence there exist h, j ∈ I such that (n− 1− 2h) > 0
and (n− 1− 2j) < 0. We now construct a graph H whose edges are colored
by f and whose tile types are contained in Tf . The graph H has j−(n−1)/2
vertices whose tile type is {ah, ân−1−h} and (n−1)/2−h vertices whose tile
type is {aj , ân−1−j}. A vertex with tile type {ah, ân−1−h} is incident to h
loops and to n − 1 − 2h half-edges with label â. A vertex with tile type
{aj , ân−1−j} is incident to n− 1− j loops and to 2j − n+ 1 half-edges with
label a. Since [j − (n− 1)/2](n− 1− 2h) + [(n− 1)/2− h](n− 1− 2j) = 0,
that is, the number of half-edges labeled by a is equal to the number of
half-edges that are labeled by â, we can match them so that the graph H is
a complete complex of order [j− (n−1)/2]+ [(n−1)/2−h] = j−h ≤ n−1,
since j ≤ n− 1 and h ≥ 0. That yields a contradiction, since Tf realizes no
graph of order smaller than n. It is thus proved that B2(Kn) > 1 for odd
values of n, that is, B2(Kn) = 2.

For the complete graph Km,n with gcd(m,n) = 1, we consider the de-
composition D consisting of the graph H = Km,n itself and the edge-coloring
fD = fH that colors every edge of Km,n with color a. We label the half-edges
incident to the vertices of degree n by label a; the half-edges incident to the
vertices of degree m by label â. We obtain the pot TfD = {{an}, {âm}} which
is associated to the coloring fD. By setting D∗ = D and T ∗ = TfD , Proposi-
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tion 6 is satisfied (condition (1) follows from the assumption gcd(m,n) = 1).
Whence B2(Km,n) = 1 if gcd(m,n) = 1.

The complete graph Km,n with gcd(m,n) 6= 1 can be managed analo-
gously to the previous cases.

Corollary 3. Let Cn be the cycle on n ≥ 3 vertices. Then B2(Cn) =
B3(Cn) = dn/2e.

Proof. We show that B2(Cn) ≤ dn/2e by applying Proposition 6. We set
Cn = (v1, v2, . . . , vn, v1) and find a partition D of its edge-set into the paths
H1 = (v1, v2, . . . , vn−1) and H2 = (v1, vn, vn−1). We treat separately the
following cases: (1) n even and (2) n odd.

(1) Consider n even. For the path H1, we take the edge-coloring fH1

with color-set CH1 = {ai : 1 ≤ i ≤ (n/2) − 1} and associated pot TfH1
=

{{a21}, {â(n/2)−1},{âi, ai+1} : i = 1, . . . , (n/2) − 2}. For the path H2, we
consider the edge-coloring fH2 with color-set CH2 = {an/2} and associated
pot TfH2

= {{â2n/2}, {an/2}}. Combining the pots TfH1
, TfH2

, we obtain the

pot TfD = {{a21}, {â2n/2}, {âi, ai+1} : i = 1, . . . , (n/2)−1} realizing the graph
Cn.

Set D∗ = {H1, H2} and T ∗ = {{a21}, {â2n/2}, {an/2}, {âi, ai+1} : i =

1, . . . , (n/2) − 2}. The elements of TfD can be partitioned into the follow-
ing subsets At, t ∈ T ∗: A{a21} = {{a21}}; A{â2

n/2
} = {{â2n/2}}; A{an/2} =

{{â(n/2)−1, an/2}}; A{âi,ai+1} = {{âi, ai+1}}, 1 ≤ i ≤ (n/2) − 2. We show
that properties (0) and (1) of Proposition 6 are satisfied.

It is easy to see that no element of TfD can belong to more than one
subset At. Hence, property (0) of Proposition 6 is satisfied.

For every H ∈ D∗, if LH can be constructed from TfH , then MfH (LH)
contains λH ≥ 1 copies of MfH (H). For instance, if H = H1, then
MfH (H) ={{a21}1, {â(n/2)−1}2,{âi, ai+1}2 : i = 1, . . . , (n/2) − 2} and we

can set MfH (LH) ={{a21}α, {â(n/2)−1}β,{âi, ai+1}mi : α, β ≥ 0, mi ≥ 0, 1 ≤
i ≤ (n/2)−2}. Since the number of half-edges in LH that are labeled by ai,
1 ≤ i ≤ (n/2)−1, is equal to the number of half-edges in LH that are labeled
by âi, the following equalities hold: 2α = m1; β = m(n/2)−2; mi−1 = mi for
2 ≤ i ≤ (n/2) − 2. Whence 2α = m1 = m2 = · · · = m(n/2)−2 = β, that
is, MfH (LH) contains α ≥ 1 copies of MfH (H). Analogously, for H = H2.
Hence, property (1) of Proposition 6 is satisfied. Since Proposition 6 holds,
B2(Cn) ≤ |CH1 |+ |CH2 |, that is, B2(Cn) ≤ n/2 if n is even.

(2) Consider n odd. For the path H1, we take the edge-coloring fH1 with
color-set CH1 = {ai : 2 ≤ i ≤ (n + 1)/2} and associated pot TfH1

={{a2},
{â(n−1)/2, â(n+1)/2},{âi, ai+1} : i = 2, . . . , (n − 1)/2}. For the path H2, we
consider the edge-coloring fH2 with color-set CH2 = {a1} and associated pot
TfH2

= {{a21}, {â1}}. Combining the pots TfH1
, TfH2

, we obtain the pot
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TfD = {{a21}, {â(n−1)/2, â(n+1)/2}, {âi, ai+1} : 1,≤ i ≤ (n − 1)/2}. The rest
of the proof is similar to the proof of the case n even. By Proposition 6,
B2(Cn) ≤ (n+ 1)/2 if n is odd.

It is thus proved that B2(Cn) ≤ dn/2e. We now show that B2(Cn) =
dn/2e. Suppose that B2(Cn) = k < dn/2e. By Proposition 1, there ex-
ists a k-edge-coloring f of Cn with k < dn/2e. Since k < dn/2e, at least
three edges of Cn are colored by the same color a. We can set f(vrvr+1)=
f(vsvs+1)= f(vtvt+1) = a, where 1 ≤ r < s < t ≤ n. Note that, for
i ∈ {r, s, t} the half-edges (vi, vivi+1), (vi+1, vivi+1) are labeled by a, â or
by â, a, respectively. Without loss of generality, we can assume that the
half-edges (vr, vrvr+1), (vr+1, vrvr+1) are labeled by a, â, respectively. If
the half-edges (vs, vsvs+1), (vs+1, vsvs+1) are labeled by a, â, respectively,
then there exists a detachment of the edges of Cn yielding two graphs of or-
der smaller than n, namely, the cycles Cs−r = (vr+1, vr+2, . . . , vs, vr+1) and
Cn−s+r = (vs+1, vs+2, . . ., vr−1, vr, vs+1) (Cs−r is a loop if s = r+ 1). Anal-
ogously, if the half-edges (vt, vtvt+1), (vt+1, vtvt+1) are labeled by a, â, re-
spectively. Therefore the half-edges (vi, vivi+1), (vi+1, vivi+1), with i = s, t,
are labeled by â, a, respectively. By these assumptions, we find a detach-
ment of the edges of Cn yielding two graphs of order smaller than n, namely,
Ct−s = (vs+1, vs+2, . . .,vt, vs+1) and Cn−t+s = (vt+1, vt+2, . . ., vs−1, vs, vt+1)
(Ct−s is a loop if t = s+ 1). That yields a contradiction, hence k ≥ dn/2e.
It is thus proved that dn/2e ≤ B2(Cn) ≤ dn/2e, that is, B2(Cn) = dn/2e.

Finally, we show that B3(Cn) = dn/2e. As remarked for the case n
even, if L is a graph that can be constructed from TfD , then MfD(L) =
{{a21}α, {â2n/2}

β, {âi, ai+1}mi : α, β ≥ 0, mi ≥ 0, 1 ≤ i ≤ (n/2) − 1}
and the equalities 2α = m1 = m2 = · · · = m(n/2)−1 = 2β hold. This
is equivalent to say that MfD(L) contains α ≥ 1 copies of MfD(Cn) =
{{a21}1, {â2n/2}

1, {âi, ai+1}2 : 1 ≤ i ≤ (n/2) − 1}. It is easy to see that if

α = 1, then MfD(L) =MfD(Cn) and L is isomorphic to Cn. Analogously,
for the case n odd. The assertion follows.

Corollary 4. Let G be a Hamiltonian graph of order n. Then B2(G) ≤
dn/2e+ 1.

Proof. A Hamiltonian cycle of G is a spanning subgraph of G. The assertion
follows from Proposition 3 and Corollary 3.

Corollary 5.
B3(Kn) = n− 1.

Proof. We use Proposition 6 to find a pot TfD realizing the graph Kn and
no graph of order smaller than n. The graph Kn has a decomposition D
into the subgraphs Hi, 1 ≤ i ≤ n− 1, where Hi is the star K1,n−i. We color
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the subgraphs Hi by disjoint color-sets CHi = {ai} and consider the edge-
coloring fHi that colors each edge of Hi by ai. The edge-coloring fHi defines
the pot TfHi

= {{ân−ii }, {ai}} and MfHi
(K1,n) = {{ân−ii }1, {ai}n−i}. Com-

bining the pots TfHi
, we obtain the pot TfD = {{ân−11 }, {a1, a2, . . . , an−1},

{a1, a2, . . . , aj−1, ân−jj } : 2 ≤ j ≤ n − 1}. Notice that MfD(Kn) contains

exactly one copy of every tile type t ∈ TfD , that is,Mf (Kn) = {t1 : t ∈ TfD}.
Set D∗ = {H1} and T ∗ = {{a1}, {ân−11 }}. The elements of TfD can be

partitioned into the following subsetsAt, t ∈ T ∗: A{a1} = {{a1, a2, . . . , an−1},
{a1, a2, . . . , aj−1, ân−jj } : 2 ≤ j ≤ n−1}; A{ân−1

1 } = {{ân−11 }}. No element of

TfD can belong to more than one subset At, that is, property (0) of Propo-
sition 6 is satisfied. Moreover, if LH1 is a graph that can be constructed
from TfH1

, then MfH1
(LH1) contains λH1 ≥ 1 copies of MfH1

(K1,n). The
property follows from the fact that the number of half-edges that are labeled
by a1 is equal to the number of half-edges that are labeled by â1, since LH1

is a complete complex. Hence, property (1) of Proposition 6 is satisfied.
Since Proposition 6 holds, the pot TfD realizes the graph Kn and no graph
of order smaller than n.

We now show that if the graph realized by TfD has order n, then it is
isomorphic to Kn. Let L be a graph that can be constructed from TfD . We

set MfD(L) = {{ân−11 }m1 , {a1, a2, . . . , an−1}mn , {a1, a2, . . . , aj−1, ân−jj }mj :
2 ≤ j ≤ n−1,m1,mn,mj ≥ 0}. For every 1 ≤ i ≤ n, the relation mi(n−i) =∑n

j=i+1mj holds since the number of half-edges that are labeled by âi is
equal to the number of half-edges that are labeled by ai. Since |V (L)| =∑i

j=1mj +
∑n

j=i+1mj , the above relation can be written as mi(n − i) =

|V (L)| −
∑i

j=1mj or, equivalently, mi(n − i + 1) = |V (L)| −
∑i−1

j=1mj .

Whence, mi+1(n− i) = |V (L)| −
∑i

j=1mj = mi(n− i). Therefore, mi+1 =
mi for every 1 ≤ i ≤ n (subscripts are read modulo n). It follows that
|V (L)| = n if and only if MfD(L) = MfD(Kn). It is easy to see that if
MfD(L) = MfD(Kn), then the graph L is uniquely determined, that is, L
is isomorphic to Kn. It is thus proved that B3(Kn) ≤ n− 1.

Finally, we show that B3(Kn) = n − 1. Suppose that B3(Kn) = k <
n − 1. By Proposition 1, there exists a k-edge-coloring f of Kn with k <
n− 1. By the assumptions, the edge-coloring f provides a pot Tf satisfying
Lemma 1. For every v ∈ V (Kn), at least one color of f appears twice in
the multi-palette Pf (v), since k < n − 1. Moreover, there exist at least
two vertices u, v ∈ V (Kn) such that Pf (u), Pf (v) contain the same color a
more than once. Hence, there exist uu1, uu2, vv1, vv2 ∈ E(Kn) such that
f(uu1) = f(uu2) =f(vv1) = f(vv2) = a. By property (iii) of Lemma 1,
the vertex u1 is not adjacent to v, a contradiction. It is thus proved that
B3(Kn) = n− 1.

Corollary 6.
B3(Km,n) = min(m,n).
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Proof. Without loss of generality, we can assume that m ≤ n. We use
Proposition 6 to find a pot TfD realizing the graph Km,n and no graph of
order smaller than m + n. The graph Km,n has a decomposition D into
the subgraphs Hi, 1 ≤ i ≤ m, where each Hi is the star K1,n. We color the
subgraphsHi by disjoint color-sets CHi = {ai} and consider the edge-coloring
fHi that colors each edge of Hi by ai. The edge-coloring fHi defines the pot
TfHi

= {{ani }, {âi}} andMfHi
(K1,n) = {{ani }1, {âi}n}. Combining the pots

TfHi
, we obtain the pot TfD = {{â1, â2, . . . , âm}, {ani } : 1 ≤ i ≤ m} realizing

the graph Km,n and Mf (Km,n) = {{â1, â2, . . . , âm}n,{ani }1 : 1 ≤ i ≤ m}.
Set D∗ = D and T ∗ = {{â1}, {ani } : 1 ≤ i ≤ m}. The elements of

TfD can be partitioned into the following subsets At, t ∈ T ∗: A{â1} =
{{â1, â2, . . . , âm}}; A{ani } = {{ani }}, for 1 ≤ i ≤ m. It is easy to see that
no element of TfD can belong to more than one subset At, that is, property
(0) of Proposition 6 is satisfied. For every Hi ∈ D, if LHi is a graph that
can be constructed from TfHi

, then MfHi
(LHi) contains λHi ≥ 1 copies of

MfHi
(K1,n). The property follows from the fact that the number of half-

edges that are labeled by ai is equal to the number of half-edges that are
labeled by âi, since LHi is a complete complex. Hence, property (1) of
Proposition 6 is satisfied. Since Proposition 6 holds, the pot TfD realizes no
graph of order smaller than m+ n.

We now show that if the graph has order m + n, then it is isomorphic
to the graph Km,n. If L is a graph that can be constructed from TfD , then
MfD(L) = {{â1, â2, . . . , âm}m0 , {ani }mi : m0,mi ≥ 0, 1 ≤ i ≤ m} and the
following equalities hold: n ·mi = m0 and |V (L)| =

∑m
i=0mi = (n+m)mi >

0, for every 1 ≤ i ≤ m. Therefore, |V (L)| = m + n if and only if mi = 1
for every 1 ≤ i ≤ m, that is, if and only if MfD(L) = MfD(Km,n). It is
easy to see that if MfD(L) = MfD(Km,n), then the graph L is uniquely
determined, that is, L is isomorphic to Km,n. It is thus proved that TfD
realizes the graph Km,n and satisfies the conditions in Scenario 3, whence
B3(Km,n) ≤ m.

Finally, we show that B3(Km,n) = m. Suppose that B3(Km,n) = k <
m ≤ n. By Proposition 1, there exists a k-edge-coloring f of Km,n. Let
U ∪ W be the bipartition of Km,n. For every u ∈ U , at least one color
of f appears twice in the multi-palette Pf (u), since every vertex of U has
degree n > k. Moreover, there exist at least two vertices u, v ∈ U such that
Pf (u), Pf (v) contain the same color a more than once, since |U | = m >
k. Hence, there exist uu1, uu2, vv1, vv2 ∈ E(Km,n) such that f(uu1) =
f(uu2) =f(vv1) = f(vv2) = a. By property (iii) of Lemma 1, the vertex u
is not adjacent to v1, a contradiction. It is thus proved that B3(Km,n) =
m.
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4.1 Bounds from cycle decompositions

We construct pots from cycle decompositions, that is decompositions into
cycles, providing upper bounds for B3(G). Cycle decompositions are exten-
sively studied – see the survey papers [2] and [15]– and our results can be
viewed as an application of cycle decompositions to the self-assembly of DNA
structures. It is known that every Eulerian graph has a cycle decomposition
[20]. The structure of a cycle allows the definition of a pot realizing a cycle
and having “nice” properties (see Lemma 2). Given a cycle decomposition
D of an Eulerian graph G, by the properties in Lemma 2, we can find a pot
TfD realizing the graph G and satisfying the conditions in Scenario 3 (see
Proposition 7); we can thus find an upper bound for B3(G). In Proposition
8, non-Eulerian graphs are considered.

Lemma 2. Let Cn = (v1, v2, . . . , vn, v1) be a cycle of length n ≥ 3. Let
f be the edge-coloring of Cn with color-set {ai : 1 ≤ i ≤ n − 1} such that
f(vivi+1) = ai for 1 ≤ i ≤ n − 1 and f(v1vn) = a1. The edge-coloring f
defines the pot Tf = {ti : 0 ≤ i ≤ n−1}, where t0 = {a21}, tn−1 = {â1, ân−1}
and ti = {âi, ai+1} for 1 ≤ i ≤ n− 2.

The pot Tf realizes the graph Cn and satisfies the conditions in Scenario
3. The multisetMf (L) of a graph L that can be constructed from Tf contains

λ ≥ 1 copies of Mf (Cn) = {t1i : 1 ≤ i ≤ n − 1}. Moreover, if L is
isomorphic to Cn, then for every 0 ≤ i ≤ n − 1 there exists exactly one
edge uv ∈ E(L) such that {tf (u), tf (v)} = {ti, ti+1}, where the subscripts
are considered modulo n.

Proof. Notice that for every 0 ≤ i ≤ n − 1 there exists exactly one vertex
of Cn whose tile type with respect to f is ti, that is, Mf (Cn) = {t1i : 0 ≤
i ≤ n − 1}. Let L be a graph that can be constructed from Tf . We set

Mf (L) = {tmi
i : mi ≥ 0, 0 ≤ i ≤ n − 1} and show that Mf (L) contains

λ ≥ 1 copies of Mf (Cn). For every 1 ≤ i ≤ n− 1, the number of half-edges
that are labeled by ai is equal to the number of half-edges that are labeled
by âi, since L is a complete complex. Consequently, the following equalities
hold: 2m0 = m1 + mn−1 and mi−1 = mi for every 2 ≤ i ≤ n − 1. Whence
m1 = m2 = · · · = mn−1 and m0 = m1, that is, Mf (L) contains λ = m1 ≥ 1
copies of Mf (Cn). Thus |V (L)| ≥ |V (Cn)|; in particular, |V (L)| = n if and
only if Mf (L) = Mf (Cn). In this case, notice that a vertex of L having

tile type ti with respect to f is adjacent to two vertices, one with tile type
ti−1 and the other with tile type ti+1 with respect to f . Hence, the graph
L is isomorphic to Cn provided that Mf (L) = Mf (Cn). Thus Tf realizes
the graph Cn and satisfies the conditions in Scenario 3. It also follows that
for every 0 ≤ i ≤ n − 1 there exists exactly one edge uv ∈ E(L) such
that {tf (u), tf (v)} = {ti, ti+1}, where the subscripts are considered modulo
n.
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Let f : E(G) → C, f ′ : E(G) → C′ be edge-colorings of the graph G.
We say that f and f ′ are equivalent if there exists a bijection π : C → C′
such that f ′(e) = π(f(e)) for every e ∈ E(G). Equivalent edge-colorings f ,
f ′ define equivalent pots, as we are going to explain. We say that the pots
Tf , Tf ′ associated to f , f ′, respectively, are equivalent if Tf ′ can be obtained
from Tf by replacing, in every t ∈ Tf , each label a (respectively, â) coming

from the color-set C with the label π(a) (respectively, π̂(a)) coming from the
color-set C′. Accordingly, a tile type t′ ∈ Tf ′ is equivalent to the tile type
t ∈ Tf if t′ is obtained from t by replacing the labels in t as described above.

Proposition 7. Let G be an Eulerian graph and let D be a cycle decom-
position of G. For every cycle H ∈ D of length nH ≥ 3, we consider an
edge-coloring fH and the associated pot TfH that are equivalent to the edge-
coloring f and to the associated pot Tf , respectively, of the cycle CnH in
Lemma 2. Let fD be the edge-coloring of G obtained by combining the edge-
colorings fH and let TfD be the associated pot obtained by combining the pots
TfH .

The pot TfD = {tj : 1 ≤ j ≤ |V (G)|} realizes the graph G and satisfies
the conditions in Scenario 3. Whence B3(G) ≤ |E(G)| − |D|.

Proof. We note that |TfD | = |V (G)| and, consequently,MfD(G) = {t1j : 1 ≤
j ≤ |V (G)|}. It follows from the fact that G is the edge-disjoint union of the
graphs H ∈ D that are colored by disjoint color-sets and MfH (H) = {t1 :
t ∈ TfH}, since Lemma 2 holds. Observe that every t ∈ TfH is contained in
exactly one element tj ∈ TfD .

Let L be a graph that can be constructed from the pot TfD . We set
MfD(L) = {tmj

j : mj ≥ 0, 1 ≤ j ≤ |V (G)|} and prove that |V (L)| ≥ |V (G)|.
For every H ∈ D, we denote by LH the subgraph of L induced by the
color-set CH (the color-set of fH). Since the graphs H ∈ D are colored
by disjoint color-sets, the graph L is the edge-disjoint union of the graphs
LH . As proved in Proposition 6, LH is non-empty for every H ∈ D. A
graph LH is constructed from the pot TfH . By Lemma 2, the multiset
MfH (LH) contains λH ≥ 1 copies of MfH (H), that is, for every tile type
t ∈ TfH there exists at least one vertex of LH having tile type t with respect
to fH . Since V (LH) ⊆ V (L) and every t ∈ TfH is contained in exactly
one element tj ∈ TfD , we have mj ≥ 1 for every 1 ≤ j ≤ |V (G)|. Hence

|V (L)| =
∑|V (G)|

j=1 mj ≥ |V (G)|. In particular, |V (L)| = |V (G)| if and only
if mj = 1 for every 1 ≤ j ≤ |V (G)|, that is, MfD(L) =MfD(G).

We show that ifMfD(L) =MfD(G), then L is isomorphic to G. Firstly,
notice that every edge uv ∈ E(G) is contained in exactly one cycle H ∈ D
and since Lemma 2 holds, there exists exactly one integer 0 ≤ i ≤ nH − 1
such that the set {tfH (u), tfH (v)} is equivalent to {ti, ti+1}, that is, tfH (u)
is equivalent to ti and tfH (v) is equivalent to ti+1 or vice versa. For the sake
of brevity, we say that the edge uv ∈ E(G) has form {ti, ti+1} with respect
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to fH . SinceMfD(L) =MfD(G) impliesMfH (LH) =MfH (H), and so LH
is isomorphic to H, we can repeat the same observation for L.

Let θ be the correspondence between V (G) and V (L) that maps the
vertex v ∈ V (G) to the vertex θ(v) ∈ V (L) such that tfD(v) = tfD(θ(v)).
Let ϕ be the correspondence between E(G) and E(L) that maps the edge
uv ∈ E(G) having form {ti, ti+1} with respect to fH to the edge ϕ(uv)
having the same form as uv with respect to fH . We prove that the pair
(θ, ϕ) is an isomorphism between G and L. The correspondence θ is a
bijection between V (G) and V (L), since MfD(G) =MfD(L) and for every
tj ∈ TfD there exists exactly one vertex v ∈ V (G) and exactly one vertex
v′ ∈ V (L) such that tfD(v) = tfD(v′) = tj . The correspondence ϕ is a
bijection between E(G) and E(L), since for every H ∈ D and 0 ≤ i ≤ nH−1
there exists exactly one edge uv ∈ E(G) and exactly one edge u′v′ ∈ E(L)
having form {ti, ti+1} with respect to fH , as Lemma 2 holds. We show that
ϕ(uv) = θ(u)θ(v) for every uv ∈ E(G). As remarked, an edge uv ∈ E(G)
has form {ti, ti+1} with respect to fH , where H is the cycle of D such that
uv ∈ E(H) and i is a suitable integer 0 ≤ i ≤ nH − 1. Without loss
of generality, we can assume that tfH (u) is equivalent to ti and tfH (v) is
equivalent to ti+1. By definition of ϕ, the edge ϕ(uv) ∈ E(L) has form
{ti, ti+1} with respect to fH . Set tfD(u) = tr ∈ TfD and tfD(v) = ts ∈ TfD .
By definition of θ, we have tfD(θ(u)) = tr and tfD(θ(v)) = ts. Since tr and ts
contain tfH (u) and tfH (v), respectively, which are equivalent to ti and ti+1,
respectively, the edge θ(u)θ(v) ∈ E(LH) has form {ti, ti+1} with respect to
fH . By Lemma 2, the graph LH has exactly one edge having form {ti, ti+1}
with respect to fH . Consequently, the graph L has exactly one edge having
form {ti, ti+1} with respect to fH . Whence ϕ(uv) = θ(u)θ(v). It is thus
proved that TfD realizes the graph G and satisfies the conditions in Scenario
3. It also follows that B3(G) ≤

∑
H∈D |CH |, where |CH | = nH − 1, since

Lemma 2 holds. Whence B3(G) ≤
∑

H∈D(nH − 1) = |E(G)| − |D|, since
|E(G)| =

∑
H∈D |E(H)| =

∑
H∈D nH . The assertion follows.

Proposition 8. Let G be a connected graph having 2` > 0 vertices of odd
degree. The graph G has a decomposition D into cycles (possibly none) and
` paths connecting vertices of odd degree. Then B3(G) ≤ |E(G)| − |D|+ `.

Proof. Firstly, we define an edge-coloring f∗ and the associated pot Tf∗
realizing paths. Given a cycle Cn+2 = (v1, v2, . . . , vn+2, v1) which is colored
by the edge-coloring f in Lemma 2, we denote by f∗ the restriction of f
to the edges of the path Pn = (v2, . . . , vn+2). Notice that f∗ has color-set
{a2, . . . , an+1}. Let Tf∗ = {t∗i : 1 ≤ i ≤ n + 1} be the pot associated to f∗

that can be obtained from the pot Tf in Lemma 2 as follows: t∗1 = t1r{â1} =

{a2}; t∗n+1 = tn+1 r {â1} = {ân+1}; t∗i = ti for 2 ≤ i ≤ n. The pot Tf∗
inherits the same properties as Tf . More specifically, it realizes the graph
Pn and satisfies the conditions in Scenario 3; if L is a graph that can be
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constructed from Tf∗ then Mf∗(L) contains λ ≥ 1 copies of Mf∗(Pn); if L
is isomorphic to Pn, then for every 1 ≤ i ≤ n the graph L contains exactly
one edge uv such that {tf∗(u), tf∗(v)} = {t∗i , t∗i+1}.

We show that G has a decomposition D into cycles and paths. Let G1 be
the graph obtained by connecting the vertices of odd degree in G to a vertex
u not belonging to V (G). Since G1 is Eulerian, it has a cycle decomposition
D1. Let D be the decomposition of G obtained from D1 by deleting the
vertex u into the cycles of D1 containing it. The decompositions D consists
of cycles and ` paths connecting the vertices of odd degree in G.

We use D to define a pot TfD . We color the elements of D by disjoint
color-sets. For every cycle H ∈ D we consider the edge-coloring fH and
the associated pot TfH that are equivalent to f and Tf , respectively, in
Lemma 2. For every path H ∈ D we consider the edge-coloring fH and
the associated pot TfH that are equivalent to the edge-coloring f∗ and Tf∗ ,
respectively. Let fD be the edge-coloring of G obtained by combining the
edge-colorings fH and let TfD be the associated pot obtained by combining
the pots TfH . Since Tf∗ inherits the same properties as Tf , we can repeat
the proof of Proposition 7 and prove that TfD realizes the graph G and
satisfies the conditions in Scenario 3. Whence B3(G) ≤

∑
H∈D |CH |. Notice

that |CH | = nH − 1 if H ∈ D is a cycle of length nH ; |CH | = nH if H ∈ D
is a path with nH edges. Moreover, |E(G)| =

∑
H∈D |E(H)| =

∑
H∈D nH .

Therefore B3(G) ≤ |E(G)| − |D|+ `.

Proposition 8 can be applied to a tree, in this case the decomposition
contains no cycle. Unlike Proposition 6, where a decomposition contains
arbitrary subgraphs, that ones in Proposition 7 and 8 consist of prescribed
graphs (cycles). The provided upper bounds suggest to select the decompo-
sitions with the maximum possible number of cycles.

5 Conclusion

We provide a strategy for computing the minimum number of bond-edge
types and tile types needed in the construction of any target graph. Our
techniques allow to efficiently construct the target graph by avoiding the
assembly of undesired graphs as described in Scenario 2 and 3. We also
describe the problem on DNA self-assembly from a new graph theoretic
perspective employing edge-colorings and graph decompositions. We em-
phasize that although we are motivated by DNA self-assembly, the combi-
natorial tools and methods presented may apply to other form of assembly
whose building blocks bond to each other according to certain criteria. That
might be the case for pathway reconstruction on 3D NMR maps, where edge-
colored paths whose edges follow a predefined order of colors are considered
– see for instance [19].
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[9] M. Horňák, R. Kalinowski, M. Meszka, M. Woźniak, Minimum number
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