A boundary value problem on the unit disk in R-2 is considered, involving an elliptic operator with a singular weight of logarithmic type and nonlinearities which are subcritical or critical with respect to the associated gradient norm. The existence of non-trivial solutions is proved, relying on variational methods. In the critical case, the associated energy functional is non-compact. A suitable asymptotic condition allows to avoid the non-compactness levels of the functional.

Elliptic equations in dimension 2 with double exponential nonlinearities / Calanchi, Marta; Ruf, Bernhard; Sani, Federica. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 24:3(2017), pp. N/A-N/A. [10.1007/s00030-017-0453-y]

Elliptic equations in dimension 2 with double exponential nonlinearities

Sani, Federica
2017

Abstract

A boundary value problem on the unit disk in R-2 is considered, involving an elliptic operator with a singular weight of logarithmic type and nonlinearities which are subcritical or critical with respect to the associated gradient norm. The existence of non-trivial solutions is proved, relying on variational methods. In the critical case, the associated energy functional is non-compact. A suitable asymptotic condition allows to avoid the non-compactness levels of the functional.
2017
24
3
N/A
N/A
Elliptic equations in dimension 2 with double exponential nonlinearities / Calanchi, Marta; Ruf, Bernhard; Sani, Federica. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 24:3(2017), pp. N/A-N/A. [10.1007/s00030-017-0453-y]
Calanchi, Marta; Ruf, Bernhard; Sani, Federica
File in questo prodotto:
File Dimensione Formato  
VOR_Elliptic equations in dimension.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 551.55 kB
Formato Adobe PDF
551.55 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
NDEA1-accepted.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 9.84 MB
Formato Adobe PDF
9.84 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1187061
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 34
social impact