A boundary value problem on the unit disk in R-2 is considered, involving an elliptic operator with a singular weight of logarithmic type and nonlinearities which are subcritical or critical with respect to the associated gradient norm. The existence of non-trivial solutions is proved, relying on variational methods. In the critical case, the associated energy functional is non-compact. A suitable asymptotic condition allows to avoid the non-compactness levels of the functional.
Elliptic equations in dimension 2 with double exponential nonlinearities / Calanchi, Marta; Ruf, Bernhard; Sani, Federica. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 24:3(2017), pp. N/A-N/A. [10.1007/s00030-017-0453-y]
Elliptic equations in dimension 2 with double exponential nonlinearities
Sani, Federica
2017
Abstract
A boundary value problem on the unit disk in R-2 is considered, involving an elliptic operator with a singular weight of logarithmic type and nonlinearities which are subcritical or critical with respect to the associated gradient norm. The existence of non-trivial solutions is proved, relying on variational methods. In the critical case, the associated energy functional is non-compact. A suitable asymptotic condition allows to avoid the non-compactness levels of the functional.File | Dimensione | Formato | |
---|---|---|---|
VOR_Elliptic equations in dimension.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
551.55 kB
Formato
Adobe PDF
|
551.55 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
NDEA1-accepted.pdf
Open access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
9.84 MB
Formato
Adobe PDF
|
9.84 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris