In a recent paper [19], the authors obtained a sharp version of the Trudinger-Moser inequality in the whole space ℝ2, giving necessary and sufficient conditions for the boundedness and the compactness of general nonlinear functionals in W 1, 2(ℝ2). We complete this study showing that an analogue of the result in [19] holds in arbitrary dimensions N ≥2. We also provide an application to the study of the existence of ground state solutions for quasilinear elliptic equations in ℝN.
Trudinger-Moser inequalities with the exact growth condition in $BbbR^N$ and applications / Masmoudi, Nader; Sani, Federica. - In: COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0360-5302. - 40:8(2015), pp. 1408-1440. [10.1080/03605302.2015.1026775]
Trudinger-Moser inequalities with the exact growth condition in $BbbR^N$ and applications
Sani, Federica
2015
Abstract
In a recent paper [19], the authors obtained a sharp version of the Trudinger-Moser inequality in the whole space ℝ2, giving necessary and sufficient conditions for the boundedness and the compactness of general nonlinear functionals in W 1, 2(ℝ2). We complete this study showing that an analogue of the result in [19] holds in arbitrary dimensions N ≥2. We also provide an application to the study of the existence of ground state solutions for quasilinear elliptic equations in ℝN.File | Dimensione | Formato | |
---|---|---|---|
VOR_Trudinger-Moser Inequalities.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
546.17 kB
Formato
Adobe PDF
|
546.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
POST PRINT_Trudinger-Moser Inequalities with the Exact Growth Condition.pdf
Open access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
239.13 kB
Formato
Adobe PDF
|
239.13 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris