In a recent paper [19], the authors obtained a sharp version of the Trudinger-Moser inequality in the whole space ℝ2, giving necessary and sufficient conditions for the boundedness and the compactness of general nonlinear functionals in W 1, 2(ℝ2). We complete this study showing that an analogue of the result in [19] holds in arbitrary dimensions N ≥2. We also provide an application to the study of the existence of ground state solutions for quasilinear elliptic equations in ℝN.

Trudinger-Moser inequalities with the exact growth condition in $BbbR^N$ and applications / Masmoudi, Nader; Sani, Federica. - In: COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0360-5302. - 40:8(2015), pp. 1408-1440. [10.1080/03605302.2015.1026775]

Trudinger-Moser inequalities with the exact growth condition in $BbbR^N$ and applications

Sani, Federica
2015

Abstract

In a recent paper [19], the authors obtained a sharp version of the Trudinger-Moser inequality in the whole space ℝ2, giving necessary and sufficient conditions for the boundedness and the compactness of general nonlinear functionals in W 1, 2(ℝ2). We complete this study showing that an analogue of the result in [19] holds in arbitrary dimensions N ≥2. We also provide an application to the study of the existence of ground state solutions for quasilinear elliptic equations in ℝN.
2015
40
8
1408
1440
Trudinger-Moser inequalities with the exact growth condition in $BbbR^N$ and applications / Masmoudi, Nader; Sani, Federica. - In: COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0360-5302. - 40:8(2015), pp. 1408-1440. [10.1080/03605302.2015.1026775]
Masmoudi, Nader; Sani, Federica
File in questo prodotto:
File Dimensione Formato  
VOR_Trudinger-Moser Inequalities.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 546.17 kB
Formato Adobe PDF
546.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
POST PRINT_Trudinger-Moser Inequalities with the Exact Growth Condition.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 239.13 kB
Formato Adobe PDF
239.13 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1187052
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 57
social impact