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Abstract

In a recent paper (19), the authors obtained a sharp version of the Trudinger-Moser

inequality in the whole space �2, giving necessary and sufficient conditions for the

boundedness and the compactness of general nonlinear functionals in W 1� 2��2�. We

complete this study showing that an analogue of the result in (19) holds in arbitrary

dimensions N ≥ 2. We also provide an application to the study of the existence of ground

state solutions for quasilinear elliptic equations in �N .
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1. INTRODUCTION AND MAIN RESULTS

Trudinger-Moser Inequalities

Let � ⊂ �N , N ≥ 2, be a bounded domain and let W
1�p
0 ��� be the usual Sobolev space

obtained as the closure of ��
0 ��� with respect to the Lp-Dirichlet norm, i.e.

��u�p
p �=

∫
�

��u�p dx�

The Sobolev embedding theorem reads as follows:

W
1�p
0 ��� ⊂

{
Lp∗

��� if 1 ≤ p < N�

L���� if p > N�

where p∗ �= Np/�N − p� is the critical Sobolev exponent. In the so-called limiting Sobolev

case, which occurs when p = N , W 1� N
0 ��� ⊂ Lq��� for any q ≥ 1 but, it is well know

that W 1� N
0 ��� � L����. Actually, the celebrated Trudinger-Moser inequality (proved

independently by V. I Yudovich (33), S. I. Pohozaev (27) and N. S. Trudinger (30) and,

later refined by J. Moser (26)) states that

sup
u∈W 1� N

0 ���� ��u�N ≤1

∫
�

e	�u� N
N−1 dx = C��� 	�

{
< +� if 	 ≤ 	N �

= +� if 	 > 	N �
(1.1)

where 	N �= N

1/�N−1�
N−1 and 
N−1 is the surface measure of the unit sphere SN−1 ⊂ �N . A

remarkable phenomenon is that inequality (1.1) still holds for the critical value 	N itself.

The supremum in (1.1) becomes infinite, even in the case 	 ≤ 	N , for domains with

infinite measure. Therefore an interesting extension is to construct Trudinger-Moser type
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inequalities in the whole space �N . A weaker result in this direction is due to S. Adachi

and K. Tanaka (1). Let

�N �t� �= et −
N−2∑
j=0

tj

j! �

Theorem 1.1 ((1)). If N ≥ 2 then for any 	 ∈ �0� 	N � there is a constant C�	� N� > 0 such

that

∫
�N

�N �	�u� N
N−1 � dx ≤ C�	� N��u�N

N ∀u ∈ W 1� N ��N �with ��u�N ≤ 1 (1.2)

and, this inequality is false for 	 ≥ 	N .

We point out that the critical exponent 	N is excluded in (1.2) and the necessity of 	 < 	N

was proved in (1) using the sequence of test functions introduced by Moser. This is quite

different from the Trudinger-Moser inequality in its original form. However, B. Ruf (28)

(in the case N = 2) and Y. Li, B. Ruf (22) (in the case N ≥ 3) showed that if the Dirichlet

norm is replaced by the standard Sobolev norm, i.e.

�u�N
W 1� N �= ��u�N

N + �u�N
N �
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then the critical exponent 	 = 	N becomes admissible and Moser’s result can be fully

extended to the whole space �N .

Theorem 1.2 ((28), (22)). Let N ≥ 2, then

sup
u∈W 1� N ��N �� �u�

W1� N ≤1

∫
�N

�N �	�u� N
N−1 � dx = C�N� 	�

{
< +� if 	 ≤ 	N �

= +� if 	 > 	N �
(1.3)

In view of Theorem 1.1 and Theorem 1.2, we can say that the failure of the Trudinger-

Moser inequality (1.1) in the whole space �N can be recovered either by weakening the

exponent 	N or by strengthening the Dirichlet norm. In (19), the authors, dealing with

the 2-dimensional case, remarked that, weakening slightly the growth of the exponential

nonlinearity, it is possible to preserve both the sharp exponent 	2 = 4� and the Dirichlet

norm.

Theorem 1.3 ((19), Proposition 1.4). There is a constant C > 0 such that

∫
�2

e4�u2 − 1
�1 + �u��2

dx ≤ C�u�2
2 ∀u ∈ W 1� 2��2�with ��u�2 ≤ 1

and, this inequality fails if the power 2 in the denominator is replaced by any p < 2.

Obviously this last inequality implies (1.2), but the interesting fact is that it also implies

(1.3). This result raised the following open question:

Does an analogue of Theorem 1�3 hold in higher dimensions N > 2?
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As expected the answer to this question is affirmative and one of the main purposes of this

paper is to show that, actually, if we keep both the conditions 	 = 	N and ��u�N ≤ 1 then

we have

Theorem 1.4. Let N ≥ 2 then there is a constant CN > 0 such that

∫
RN

�N �	N �u� N
N−1 �

�1 + �u�� N
N−1

dx ≤ CN�u�N
N ∀u ∈ W 1� N ��N �with ��u�N ≤ 1� (1.4)

Moreover, this inequality fails if the power N
N−1 in the denominator is replaced by any p < N

N−1 .

As in the 2-dimensional case, this last inequality implies both (1.2) and (1.3).

Remark 1.1. We mention that the extension of Theorem 1.3 to the higher order Sobolev

space W 2�2��4� has been obtained in (25). It will be clear from the proof of (1.4) that,

a suitable combination of the arguments proposed in the present paper together with the

ideas used in (25) enables to obtain an analogue inequality also in the space W 2� N
2 ��N � with

N > 2.

We point out that in (19) the authors obtained not only a precised version of the Trudinger-

Moser inequality in the whole plane �2, but necessary and sufficient conditions for the

boundedness and the compactness of general nonlinear functionals in W 1� 2��2�. In this

way, they completely determined the growth order, not only among exponential growth
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functionals. Arguing as in (19), we obtain the complete generalization to the higher-

dimensional case of the above mentioned result (see (19), Theorem 1.5).

Theorem 1.5 (Boundedness). Let N ≥ 2. Let g � � → 0� +�� be any Borel function and

define the functional G as

G�u� �=
∫
�N

g�u�x�� dx�

Then for any K > 0 the following conditions are equivalent:

(1) lim sup�t�→+� �t� N
N−1 e

− N

K1/�N−1� �t� N
N−1

g�t� < +� and lim sup�t�→0 �t�−N g�t� < +�.

(2) There exists a constant CN� g� K > 0 such that

G�u� ≤ CN� g� K�u�N
N ∀u ∈ W 1� N ��N �with ��u�N

N ≤ 
N−1K�

Theorem 1.6 (Compactness). Let N ≥ 2. Let g � � → 0� +�� be any a.e.-continuous

function and define the functional G as

G�u� �=
∫
�N

g�u�x�� dx�

Then for any K > 0 the following conditions are equivalent:

(3) lim sup�t�→+� �t� N
N−1 e

− N

K1/�N−1� �t� N
N−1

g�t� = 0 and lim sup�t�→0 �t�−N g�t� = 0.

(4) For any sequence �un�n≥1 ⊂ W 1� N
rad ��N � satisfying ��un�N

N ≤ 
N−1K and weakly

converging to some u ∈ W 1� N
rad ��N �, we have that G�un� → G�u�.
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Theorem 1.5 includes Theorem 1.4 as a particular case, in fact it suffices to take 
N−1K = 1,

moreover Theorem 1.6 shows that for functionals behaving like the one appearing in (1.4)

we have a loss of compactness.

The proof of Theorem 1.5 and Theorem 1.6 follows the arguments introduced in (19).

In Section 2, we explicitly exhibits sequences of test functions constructed to prove the

necessity of conditions (1) and (3). More precisely, we show that if (1) fails then there exists

a sequence �un�n≥1 ⊂ W 1� N ��N � such that

��un�N
N ≤ 
N−1K ∀n ≥ 1 and �un�N → 0� G�un� → +� as n → +��

while if (3) fails then there exists a sequence �un�n≥1 ⊂ W 1� N
rad ��N �, satisfying ��un�N

N ≤

N−1K and weakly converging to 0 in W 1� N ��N �, such that G�un� > � for some � > 0. In

Section 3, we obtain an exponential version of the radial Sobolev inequality expressing

the optimal growth of radial functions in the exterior of balls when the LN -norm and the

Dirichlet norm are given (see Theorem 3.2). In order to obtain this optimal descending

growth condition, we argue as in (19) reducing the problem to a discrete version. Section

4 and Section 5 are devoted to the proof of the sufficiency of conditions (1) and (3)

respectively. While the proof of the sufficiency of condition (3) again follows (19), when we

show the sufficiency of (1) we avoid the reduction of the problem to a discrete version and

we propose an alternative proof. In fact, exploiting the arguments introduced by B. Ruf

in (28) and applying the optimal descending growth condition obtained in Section 3, we

show that the problem can be solved using the classical Trudinger-Moser inequality (1.1)
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for bounded domains in �N . Finally, in Section 6, we prove that inequality (1.4) implies

(1.3).

Ground State Solutions for Quasilinear Equations in �N

The above Trudinger-Moser inequalities play an important role in nonlinear analysis. Let

us consider the following quasilinear equation

−�N u + c�u�N−2u = f�u� in �N � N ≥ 2� (1.5)

where �N is the N -Laplacian operator, i.e. �N u �= div ���u�N−2�u�, and c > 0 is a positive

constant. The research of ground state solutions for problems of the form (1.5) is crucial

in several applications to the study of evolution equations of N -Laplacian type that appear

in non-Newtonian fluids, turbulent flows in porus media and other contexts.

In view of (1.3), the maximal growth on the nonlinear term f which allows to treat equation

(1.5) variationally in W 1� N ��N � is of exponential type and is given by functions f � � → �

behaving as e	0�u�N/�N−1�
at infinity, more precisely

lim
�t�→+�

f�t�

e	�t�N/�N−1�
=

{
0 if 	 > 	0�

+� if 	 < 	0�

for some 	0 > 0. Differently from the case of quasilinear problems on bounded domains

(see (9; 2; 3; 12; 11)), in the study of quasilinear problems on the whole space �N

one should be warned that the loss of compactness in W 1� N ��N � can be produced not

only by concentration phenomena but also by vanishing phenomena. In fact, in the case

when the nonlinearity f has exponential growth, the functional associated to a variational
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approach of problem (1.5) reveals a lack of compactness due to the critical behavior of

the nonlinearity and to the unboundedness of the domain �N : at certain levels the Palais-

Smale compactness condition fails due to concentration phenomena and to the leak of the

LN -norm to infinity, i.e. to vanishing phenomena.

Recently, there has been considerable interest in the study of existence results for equations

of the form

−�N u + V�x��u�N−2u = f�u� in �N � N ≥ 2� (1.6)

where the nonlinear term f has an exponential behavior at infinity and the potential V �

�N → � is bounded away from zero, i.e.

V�x� ≥ c > 0 x ∈ �N �

If V is large at infinity in some suitable sense, then the loss of compactness due to the

unboundedness of the domain �N can be overcome and vanishing phenomena can be ruled

out. In fact, a natural framework for the function space setting of problem (1.6) is given by

the subspace E of W 1� N ��N � defined as

E �=
{

u ∈ W 1� N ��N �
∣∣∣ ∫

�N
V�x��u�N dx < +�

}

endowed with the norm

�u�E �=
(∫

�N

(��u�N + V�x��u�N )dx
) 1

N ∀u ∈ E�

9
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Under appropriate assumptions on the potential V , the embedding

E ↪→ Lp��N � (1.7)

turns out to be compact. For instance, if

V −1 ∈ L
1

N−1 ��N � (1.8)

then the embedding (1.7) is compact for any p ≥ 1 (see e.g. (31, Lemma2.4)), while assuming

the weaker condition

V −1 ∈ L1��N � (1.9)

the embedding (1.7) is compact only for any p ≥ N (see (10)).

The authors of (13; 16; 17; 5; 4; 14; 31; 21), considering a potential V satisfying (1.8)

or (1.9), obtained existence results for equations of the form (1.6) and even more general

equations. However, the arguments of their proofs depend crucially on the compact

embeddings (1.7) given by (1.8) and (1.9), and in particular on the compact embedding of

E into LN ��N �.

In the case when the potential V is constant, i.e. V�x� = c for any x ∈ �N , there is a long

way to go yet. The natural space for a variational treatment of (1.5) is the whole space

W 1� N ��N � and it is well known that the embedding

W 1� N ��N � ↪→ LN ��N �

10
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is continuous but not compact, even if we restrict out attention to the radial case. In the

literature, up to our knowledge, there are only few existence results concerning the study

of problem (1.5) by means of variational methods. We refer the reader to the papers (8),

(6), (29), (18), (19) and the references therein for the semilinear case N = 2. In order to

overcome the possible failure of the Palais-Smale compactness condition, there is a common

approach that relate (6), (29), (18) and (19), and it involves a constrained minimization

problem through the Pohozaev identity. Combining the Trudinger-Moser inequality with

the exact growth (Theorem 1.5 and Theorem 1.6) with the arguments in (18) and (19), our

aim is to obtain the existence of ground state solutions for equations of the form (1.5) in

the general case N ≥ 3. This will be done in Section 7, where we will prove the following

result.

Theorem 1.7. Let f � � → � be a continuous function satisfying f�0� = 0 and

∃� > N such that 0 < �F�t� �= �
∫ t

0
f�s� ds ≤ tf�t� ∀t ∈ �\�0�� (f1)

∃t0� M0 > 0 such that F�t� ≤ M0f�t� ∀t ≥ t0� (f2)

lim
t→+�

f�t�

e	tN/�N−1�
=

{
0 if 	 > 	0�

+� if 	 < 	0�
(f2)

If

lim
t→+�

tN/�N−1�F�t�

e	0tN/�N−1�
= +�

11
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then, for each c > 0, equation (1.5) admits a positive radial solution u ∈ W 1� N ��N � which has

the least energy among all the solutions of (1.5).

We complete this paper proposing, in Section 8 (see also Theorem 7.4), other sufficient

conditions for the existence of ground states solutions for equation (1.5).

Notations

We will write A � B to denote an estimate of the form A ≤ CB for some constant C > 0

depending only on the dimension N . We will also write A ∼ B to denote that A � B and

that B � A. Finally, we will always denote by BR ⊂ �N the ball of radius R > 0 centered

at 0, i.e.

BR �= �x ∈ �N
∣∣ �x� ≤ R��

2. NECESSITY OF (1) AND (3): COUNTEREXAMPLES

In order to prove the necessity of (1), we show that if (1) fails then there exists a sequence

�un�n≥1 ⊂ W 1� N ��N � such that

��un�N
N ≤ 
N−1K ∀n ≥ 1 and �un�N → 0� G�un� → +�as n → +��

Similarly, in order to prove the necessity of (3), we show that if (3) fails then there exists a

sequence �un�n≥1 ⊂ W 1� N
rad ��N �, satisfying ��un�N

N ≤ 
N−1K and weakly converging to 0 in

W 1� N ��N �, such that G�un� > � for some � > 0.
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First we consider the much easier case with the failure of the conditions (1) and (3) at the

origin. Let �un�n≥1 ⊂ W 1� N ��N � be a sequence of spherically symmetric functions defined

by

un�x� �=

⎧⎪⎨
⎪⎩

an if 0 ≤ �x� ≤ Rn�

an�1 − �x� + Rn� if Rn < �x� ≤ Rn + 1�

0 if �x� > Rn + 1�

where �an�n≥1, �Rn�n≥1 are sequences of positive real numbers to be chosen and satisfying

an → 0, Rn → +� as n → +�. We have that

�un�N
N � aN

n RN
n � ��un�N

N � aN
n RN−1

n and G�un� ≥ 
N−1

N
g�an�R

N
n �

If (1) is violated by

lim sup
�t�→0

�t�−N g�t� = +��

then there exists a sequence �an�n≥1 ⊂ �+, an → 0, such that a−N
n g�an� → +�. Let

�bn�n≥1 ⊂ �+, bn → +�, be such that a−N
n g�an� ≥ bn and choose

Rn �= a
− 1

N
n + a−1

n b
− 1

2N
n �

Then Rn → +�, anRn → 0, aN
n RN−1

n → 0 and

G�un� ≥ 
N−1

N
bna

N
n RN

n → +��

If (3) is violated by

lim sup
�t�→0

�t�−N g�t� > 0�
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then there exist a sequence �an�n≥1 ⊂ �+, an → 0 and a constant � > 0 such that g�an� ≥
�aN

n . Choosing Rn �= a−1
n , we have that Rn → +�, anRn = 1, aN

n RN−1
n → 0 and

G�un� ≥ 
N−1

N
�aN

n RN
n = 
N−1

N
� > 0�

It remains to consider the case when the conditions (1) and (3) fail at infinity. Let �bn�n≥1 ⊂
�+, bn → +�, and �Kn�n≥1 ⊂ �+, Kn ↑ K, be such that

lim sup
�t�→+�

�t� N
N−1 e

− N

K1/�N−1� �t� N
N−1

g�t� = lim sup
n→+�

cn

where

cn �= b
N

N−1
n e

− N

K
1/�N−1�
n

b
N

N−1
n

g�bn��

Also, define

Rn �= e
− 1

K
1/�N−1�
n

b
N

N−1
n

�

so that cn = b
N

N−1
n RN

n g�bn�. Now, we consider the so-called Moser’s sequence ��n�n≥1 ⊂
W 1� N ��N � consisting of spherically symmetric functions defined by

�n�x� �=

⎧⎪⎪⎨
⎪⎪⎩

bn if 0 ≤ �x� ≤ Rn�

bn

� log �x��
� log Rn�

if Rn < �x� ≤ 1�

0 if �x� > 1�

We have that

��n�N
N �

bN
n

� log Rn�N
= K

N
N−1
n

b
N

N−1
n

� ���n�N
N = 
N−1Kn ≤ 
N−1K
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and

G��n� ≥ 
N−1

N
g�bn�R

N
n = 
N−1

N

cn

b
N

N−1
n

�

Moreover, if �Sn�n≥1 ⊂ �+ and we consider the sequence �un�n≥1 ⊂ W 1� N ��N � with

un�x� �= �n�x/Sn� then

�un�N
N = SN

n ��n�N
N �

SN
n K

N
N−1
n

b
N

N−1
n

� ��un�N
N = ���n�N

N ≤ 
N−1K

and

G�un� = SN
n G��n� ≥ 
N−1

N

SN
n cn

b
N

N−1
n

�

Assume that the condition (1) fails at infinity, namely

lim sup
�t�→+�

�t� N
N−1 e

− N

K1/�N−1� �t� N
N−1

g�t� = lim sup
n→+�

cn = +��

and let �Sn�n≥1 ⊂ �+ be such that

Sn = o
(
b

1
N−1
n

)
and

SN
n cn

b
N

N−1
n

→ +��

Then by construction

��un�N
N ≤ 
N−1K� ∀n ≥ 1 and �un�N → 0� G�un� → +� as n → +��

Now, assume that the condition (3) fails at infinity, namely

lim sup
�t�→+�

�t� N
N−1 e

− N

K1/�N−1� �t� N
N−1

g�t� = lim sup
n→+�

cn > 0�
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Choosing Sn = b
1

N−1
n , the corresponding sequence �un�n≥1 is bounded in W 1� N ��N �, in fact

�un�N
N � K

N
N−1
n ≤ K

N
N−1 and ��un�N

N ≤ 
N−1K�

Moreover un → 0 a.e. in �N and

G�un� ≥ 
N−1

N
cn ≥ 
N−1

N
�

for some � > 0.

3. OPTIMAL DESCENDING GROWTH CONDITION

In (19), the authors obtained the following exponential version of the radial Sobolev

inequality expressing the optimal growth of radial functions in the exterior of balls when

the L2-norm and the Dirichlet norm are given.

Theorem 3.1 ((19), Theorem 3.1). There exists a constant C > 0 such that for any u ∈
W 1�2

rad��2� satisfying ur ≤ 0 ≤ u, u�R� > 1 and

��u�2
L2��2\BR� ≤ 2�K�

for some R� K > 0, we have

e
2
K u2�R�

u2�R�
K2R2 ≤ C�u�2

L2��2\BR��
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In this section, we show that an analogue Theorem 3.1 still holds in any higher dimension

N > 2. This optimal descending growth condition will enable us to reduce the proof of

the inequality expressed by condition (2) of Theorem 1.5 to a simple application of the

Trudinger-Moser inequality for bounded domains in �N .

Theorem 3.2. There exists a constant CN > 0 such that for any u ∈ W 1� N
rad ��N � satisfying ur ≤

0 ≤ u, u�R� > 1 and

��u�N
LN ��N \BR� ≤ 
N−1K�

for some R� K > 0, we have

e
N

K1/�N−1� u
N

N−1 �R�

u
N

N−1 �R�
K

N
N−1 RN ≤ CN�u�N

LN ��N \BR��

In the above estimate, the function

eu
N

N−1

u
1

N−1

is optimal. In fact,

Theorem 3.3. Let

��h� �= inf
{�u�LN ��N \B1�

∣∣ u ∈ W 1� N
rad ��N �� ur ≤ 0 ≤ u� u�1� = h� ��u�N

LN ��N \B1� ≤ 
N−1

}
�
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For any h > 1, we have

��h� ∼
eh

N
N−1

h
1

N−1

�

We can notice that Theorem 3.2 follows from Theorem 3.3 by rescaling. In order to prove

Theorem 3.3, we consider the discrete version and, following the arguments introduced in

(19), we define

�d�h� �= inf
{�a��e�

∣∣ �a�1 = h� �a�N ≤ 1
}
�

where for any sequence a �= �ak�k≥0

�a�p
p �=

+�∑
k=0

�ak�p and �a�N
�e� �=

+�∑
k=0

�ak�N eNk�

Lemma 3.4. For any h > 1, we have that

�d�h� ∼
eh

N
N−1

h
1

N−1

�

Proof. Since �d�h� is increasing in h, it suffices to show that

�d�k
N−1

N � ∼
ek

k
1
N

for any positive integer k.
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If we consider the sequence a �= �aj�j≥0 defined by

aj �=
{

1

k
1
N

if j ∈ �0� 1� � � � � k − 1��

0 otherwise�
(3.1)

then it is easy to see that

�d�k
N−1

N � �
ek

k
1
N

�

Therefore, to complete the proof, it remains to show that, for any positive integer k,

�d�k
N−1

N � �
ek

k
1
N

�

We argue by contradiction assuming that for any 0 < � << 1 there exist a positive integer

k and a sequence a �= �aj�j≥0 satisfying

�a�N ≤ 1� �a�1 = k
N−1

N and �a��e� ≤ �ek

k
1
N

�

Using the upper bound of �a��e�, we can estimate each term �aj� as follows:

�aj� ≤ �ek−j

k
1
N

∀j ≥ 0� (3.2)

Now the idea is to consider the truncated sequence a′ �= �a′
j�j≥0 defined as

a′
j �=

{
aj if j ∈ �0� 1� � � � � k − 1��

0 otherwise�

From (3.2), we deduce the following lower bound for �a′�1

�a′�1 = �a�1 −
+�∑
j=k

�aj� ≥ k
N−1

N − �

k
1
N

+�∑
j=k

ek−j ≥ k
N−1

N − C1
�

k
1
N

(3.3)
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where C1 is a positive constant independent of �, k and a.

In order to obtain an upper bound for �a′�1, we recall the following version of Hölder’s

inequality for sums which takes into account a difference defect (see (23), Inequality (3.3),

see also (24), Example 7)

(∣∣∣k−1∑
j=0

cj

∣∣∣2 + ∑
0≤i<j≤k−1

�ci − cj�2
) 1

2

≤ k
N−1

N

(k−1∑
j=0

�cj�N
) 1

N

(3.4)

where c0� c1� � � � � ck−1 ∈ �. Applying (3.4) and recalling that �a�N ≤ 1, we get

�a′�2
1 =

(k−1∑
j=0

�aj�
)2 ≤ k2 N−1

N

(k−1∑
j=0

�aj�N
) 2

N − ∑
0≤i<j≤k−1

∣∣�ai� − �aj�
∣∣2

≤ k2 N−1
N − ∑

0≤i<j≤k−1

∣∣�ai� − �aj�
∣∣2� (3.5)

In particular, combining (3.3) with (3.5), we can deduce the following estimate of the defect

∑
0≤i<j≤k−1

∣∣�ai� − �aj�
∣∣2 ≤ 2C1�k

N−2
N � (3.6)

Now, let 0 ≤ m ≤ k − 1 be such that �am� �= min0≤j≤k−1 �aj�, using Hölder’s inequality for

sums and (3.6) we get

�a′�1 − k�am� =
k−1∑
j=0

��aj� − �am�� ≤ √
k
(k−1∑

j=0

∣∣�aj� − �am�∣∣2) 1
2 ≤ √

2C1�k
N−1

N �

From this last inequality and from (3.3), it follows that

�am� ≥ 1
k
�a′�1 −

√
2C1�

k
1
N

≥ 1

k
1
N

(
1 − C1

�

k
− √

2C1�
)

≥ 1

k
1
N

(
1 − C1� − √

2C1�
)
�

1

k
1
N
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provided that � > 0 is sufficiently small. Consequently,

�a��e� ≥ ��ak−1�N eN�k−1��
1
N ≥ �am�ek

e
�

ek

k
1
N

which is a contradiction. �

In view of Lemma 3.4, we can notice that Theorem 3.3 (and hence Theorem 3.2) follows

from the following result.

Lemma 3.5. For any h > 1, we have ��h� ∼ �d�h�.

Proof. Let h > 1.

In order to show that �d�h� � ��h�, let u ∈ W 1� N
rad ��N � be such that ur ≤ 0 ≤ u, u�1� = h

and

��u�N
LN ��N \B1� ≤ 
N−1�

Let hk �= u�ek� and ak �= hk − hk+1 ≥ 0. Then by construction �a�1 = h0 = u�1� = h and,

applying Hölder’s inequality, we get

�a�N
N =

+�∑
k=0

u�ek� − u�ek+1��N

=
+�∑
k=0

(∫ ek+1

ek
−ur dr

)N ≤
+�∑
k=0

∫ ek+1

ek
�ur �N rN−1 dr

=
∫ +�

1
�ur �N rN−1 dr = 1


N−1
��u�N

LN ��N \B1� ≤ 1� (3.7)
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Moreover

�u�N
LN ��N \B1� = 
N−1

+�∑
k=0

∫ ek+1

ek
uN rN−1 dr = 
N−1

1 − e−1

N

+�∑
k=0

uN �ek+1�eN�k+1�

= 
N−1
1 − e−1

N

+�∑
k=1

hN
k eNk ≥ 
N−1

1 − e−1

N

+�∑
k=1

aN
k eNk�

from which we deduce that

�a�N
�e� = aN

0 +
+�∑
k=1

aN
k eNk � hN

0 + �u�N
LN ��N \B1��

If we prove that

hN
0 � �u�N

LN ��N \B1� (3.8)

then we can conclude that �d�h� � ��h�. In order to show that (3.8) holds, it suffices to

notice that for 1 < s < e	 with 	 �= 2
1−N

N we have

h0 − u�s� =
∫ s

1
−ur dr ≤

(∫ e	

1
�ur �N rN−1 dr

) 1
N
(∫ e	

1

1
r

dr
)N−1

N ≤ 	
N

N−1 = 1
2

<
h0

2
�

namely h0/2 ≤ u�s� for 1 < s < e	. Consequently

�u�N
LN ��N \B1� ≥ 
N−1

∫ e	

1
uN rN−1 dr ≥ 
N−1

e	N − 1
N

hN
0

2N
�

which is the desired estimate.

To complete the proof, it remains to show that ��h� � �d�h�. Normally, we would like

to prove that given a sequence a = �ak�k≥0 such that �a�1 = h� �a�N ≤ 1, we can find
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a u ∈ W 1� N
rad ��N � such that ur ≤ 0 ≤ u� u�1� = h, ��u�N

LN ��N \B1�
≤ 
N−1 and �u�LN ��N \B1� ≤

C�a��e�. Actually, since from Lemma 3.4, we know that

�d�h� ∼
eh

N
N−1

h
1

N−1

�

it is enough to consider a sequence a which is close to the infimum �d�h�, as in (3.1), and

optimize the energy. So let k be a positive integer satisfying

�k − 1�
N−1

N ≤ h ≤ k
N−1

N �

we consider the sequence a �= �aj�j≥0 with

aj �=
⎧⎨
⎩

h

k
if j ∈ �0� 1� � � � � k − 1��

0 otherwise �

We will first define u�ej� for any integer j ≥ 0. Let u�1� = h0 �= h and for j ≥ 0, we define

u�ej+1� = hj+1 �= hj − aj. It is clear that the sequence hj is nonincreasing and that hj goes

to zero when j goes to infinity. Optimizing ��u�N
LN ��N \B1�

, we see that we should take

u�r� = aj� log�e−j−1r�� + hj+1 �ej ≤ r ≤ ej+1�� (3.9)

In particular this yields an equality in the first inequality in (3.7) and hence we deduce that

��u�N
LN ��N \B1�

≤ 
N−1.

Finally, we have

�u�N
LN ��N \B1� = 
N−1

eN − 1
N

k−1∑
j=0

hN
j eNj = 
N−1

eN − 1
N

k−1∑
j=0

hN

kN
�k − j�N eNj
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∼
hN

kN
eNk

k∑
l=1

lN e−Nl �
hN

kN
eNk �

eh
N

N−1

h
1

N−1

� �d�h��

�

4. PROOF OF THEOREM ??: SUFFICIENCY OF (1)

In order to prove that (1) of Theorem 1.5 implies (2), we will only consider the case K =

−1

N−1. Then the general case follows easily by rescaling.

So, let g � � → 0� +�� be a Borel function such that

lim sup
�t�→+�

�t� N
N−1 e−	N �t� N

N−1 g�t� < +�� where 	N �= N

1

N−1
N−1� (4.1)

and

lim sup
�t�→0

�t�−N g�t� < +�� (4.2)

The aim of this Section is to show that there exists a constant CN� g > 0 such that

G�u� �=
∫
�N

g�u�x�� dx ≤ CN� g�u�N
N ∀u ∈ W 1� N ��N �with ��u�N ≤ 1� (4.3)

Recalling the notion of symmetric decreasing rearrangement of functions, it is sufficient

to prove that (4.3) holds for non-negative and radially symmetric non-increasing functions

u ∈ W 1� N
rad ��N � satisfying ��u�N ≤ 1.

Given such a function u, we can notice that the proof of inequality (4.3) reduces to

∫
�N

��u� dx ≤ CN� g�u�N
N � where ��u� �= min

(�u�N � �u�− N
N−1

)
e	N �u� N

N−1 �

as a consequence of the assumptions (4.1) and (4.2) on g.
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Let R0 = R0�u� > 0 be such that

R0 �= inf�r > 0 � u�r� ≤ 1� ∈ 0� +���

the idea is to split the integral we are interested in into two parts:

∫
�N

��u� dx =
∫
�N \BR0

+
∫

BR0

��u� dx =
∫
�N \BR0

�u�N e	N �u� N
N−1 dx +

∫
BR0

e	N �u� N
N−1

�u� N
N−1

dx�

here we have also exploited the definition of �.

The estimate of the integral on �N\BR0
is trivial. In fact, by construction u ≤ 1 on �N\BR0

,

consequently

∫
�N \BR0

�u�N e	N �u� N
N−1 dx ≤ e	N

∫
�N \BR0

�u�N dx�

Therefore, from now on, we will always assume that R0 > 0.

Let �0 ∈ �0� 1� be arbitrarily fixed. Then there exists R1 = R1�u� > 0 such that

∫
BR1

��u�N dx ≤ �0 and
∫
�N \BR1

��u�N dx ≤ 1 − �0�

We remark that the choice of �0 is independent of u, whereas the choice of R0 and R1

depends on u and hence our goal is to obtain an estimate which depends only on �0 and

N .

In order to estimate the integral on BR0
, we will distinguish between the case 0 < R0 ≤ R1

and the case 0 < R1 ≤ R0. The reason is that the first case, namely 0 < R0 ≤ R1 is subcritical
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and easily estimated. In fact, if 0 < R0 ≤ R1 then for 0 ≤ r ≤ R0 we have

u�r� = u�R0� +
∫ R0

r
−us�s� ds ≤ 1 +

(∫ R0

r
�us�s��N sN−1 ds

) 1
N
(

log
R0

r

)N−1
N

≤ 1 + 1



1/N
N−1

�
1
N

0

(
log

R0

r

)N−1
N

� (4.4)

We recall that for any � > 0 there exists a constant C� > 0 such that

1 + s
N−1

N ≤ �1 + ��s + C��
N−1

N ∀s ≥ 0� (4.5)

hence, for 0 ≤ r ≤ R0, we have

u
N

N−1 �r� ≤ 1



1/�N−1�
N−1

�1 + ���
1

N−1
0 log

R0

r
+ C��

Since �0 ∈ �0� 1�, there exists �0 = �0��0� > 0 satisfying �
1

N−1
0 = 1 − �0 and, choosing � = �0

in the above estimate, we get

u
N

N−1 �r� ≤ 1



1/�N−1�
N−1

�1 − �2
0� log

R0

r
+ C�0

�

Therefore

∫
BR0

e	N �u� N
N−1

�u� N
N−1

dx ≤
∫

BR0

e	N �u� N
N−1 dx ≤ 
N−1e

	N C�0

∫ R0

0

(R0

r

)N�1−�2
0�

rN−1 dr

= 
N−1

N�2
0

e	N C�0 RN
0 ≤ e	N C�0

�2
0

∫
BR0

�u�N dx

and the proof is completed.
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So, from now on, we will focus our attention on the case 0 < R1 ≤ R0. Again, we split the

integral on BR0
into two parts:

∫
BR0

e	N �u� N
N−1

�u� N
N−1

dx =
∫

BR0
\BR1

+
∫

BR1

e	N �u� N
N−1

�u� N
N−1

dx�

If R1 < r < R0 then, arguing as in (4.4), we can estimate

u�r� ≤ 1 + 1



1/N
N−1

�1 − �0�
1
N

(
log

R0

r

)N−1
N

and, applying (4.5), we get for any � > 0

u
N

N−1 �r� ≤ 1



1/�N−1�
N−1

�1 + ���1 − �0�
1

N−1 log
R0

r
+ C�

≤ 1



1/�N−1�
N−1

�1 + ��
(

1 − �0

N − 1

)
log

R0

r
+ C��

where we also used the inequality �1 − A�q ≤ 1 − qA which holds for all A ∈ 0� 1� and q ∈
0� 1�. In particular, choosing � = �0

N−1 , we have

u
N

N−1 �r� ≤ 1



1/�N−1�
N−1

(
1 − �2

0

�N − 1�2

)
log

R0

r
+ C�0�N for R1 < r < R0�

and hence

∫
BR0

\BR1

e	N �u� N
N−1

�u� N
N−1

dx ≤ 
N−1e
	N C�0�N

∫ R0

R1

(R0

r

)N
(

1− �2
0

�N−1�2

)
rN−1 dr

≤ �N − 1�2

�2
0

e	N C�0�N

�2
0

∫
BR0

�u�N dx�

Therefore, the proof is complete if we show that in the case 0 < R1 ≤ R0 we have

∫
BR1

e	N �u� N
N−1

�u� N
N−1

dx ≤ C�u�N
N (4.6)
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where the constant C > 0 depends only on N and �0.

In order to prove (4.6), following the arguments introduced by B. Ruf in (28), we define

v�r� �= u�r� − u�R1� for 0 ≤ r ≤ R1�

By construction v ∈ W 1� N
0 �BR1

� and �v = �u in BR1
. In the same spirit as in (28), the

motivation behind the introduction of such a function v is that we would reduce the proof

of (4.6) to an application of the Trudinger-Moser inequality (1.1) for bounded domains of

�N . Since we deal with the Dirichlet norm on the whole space �N and we don’t have any

estimate of the complete Sobolev norm of u, the above mentioned argument will not enable

us to complete the proof until we provide some additional information about u. In this

sense, the optimal descending growth condition expressed by Theorem 3.2 will be a crucial

tool. In fact, since

u�R1� > 1 and
∫
�N \BR1

��u�N dx ≤ 1 − �0

in view of Theorem 3.2 we know that

e
	N

�1−�0�1/�N−1� u
N

N−1 �R1�

u
N

N−1 �R1�
≤ CN� �0

1
RN

1

�u�N
LN ��N \BR1

�� (4.7)

Applying the following one-dimensional calculus inequality

�1 + a�q ≤ �1 + ��aq +
(

1 − 1
�1 + ��1/�q−1�

)1−q ∀a ≥ 0� ∀� > 0and ∀q > 1�
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we can estimate u on BR1
as follows

u
N

N−1 = u
N

N−1 �R1�
(

1 + v

u�R1�

) N
N−1 ≤ �1 + ��v

N
N−1 +

(
1 − 1

�1 + ��N−1

)− 1
N−1

u
N

N−1 �R1��

for any � > 0.

Consequently,

∫
BR1

e	N �u� N
N−1

�u� N
N−1

dx ≤ 1

u
N

N−1 �R1�

∫
BR1

e	N u
N

N−1 dx

≤ e
	N

(
1− 1

�1+��N−1

)− 1
N−1

u
N

N−1 �R1�

u
N

N−1 �R1�

∫
BR1

e	N �1+��v
N

N−1 dx

and, if we choose � �= �0 with �0 = �0��0� > 0 satisfying

(
1 − 1

�1 + �0�
N−1

)− 1
N−1 ≤ 1

�1 − �0�
1

N−1

� namely �0 ≥ 1 − �
1/�N−1�
0

�
1/�N−1�
0

� (4.8)

then we can apply (4.7), obtaining

∫
BR1

e	N �u� N
N−1

�u� N
N−1

dx ≤ e
	N

(
1− 1

�1+�0�N−1

)− 1
N−1

u
N

N−1 �R1�

u
N

N−1 �R1�

∫
BR1

e	N �1+�0�v
N

N−1 dx

≤ CN� �0

1
RN

1

�u�N
LN ��N \BR1

�

∫
BR1

e	N �1+�0�v
N

N−1 dx�

In conclusion, if we show the existence of �0 > 0 satisfying (??) and such that

∫
BR1

e	N �1+�0�v
N

N−1 dx ≤ CN� �0
RN

1 (4.9)
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for some constant CN� �0
> 0 depending only on N and �0, then (4.6) follows. In order to

achieve (4.9), we set

w �= �1 + �0�
N−1

N v on BR1

Since w ∈ W 1�N
0 �BR1

�, if we prove that

��w�LN �BR1
� ≤ 1

then (4.9) is nothing but a direct consequence of the Trudinger-Moser inequality (1.1) for

bounded domains of �N . We have

��w�N
LN �BR1

� = �1 + �0�
N−1��v�N

LN �BR1
� = �1 + �0�

N−1��u�N
LN �BR1

� ≤ �1 + �0�
N−1�0 ≤ 1

provided �0 > 0 satisfies

�0 ≤ 1 − �
1/�N−1�
0

�
1/�N−1�
0

Therefore, the choice

�0 = 1 − �
1/�N−1�
0

�
1/�N−1�
0

�

which is independent of u, yields the desired estimate (4.6).
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5. PROOF OF THEOREM ??: SUFFICIENCY OF (3)

Let g � � → 0� +�� be any a.e.-continuous function satisfying

lim sup
�t�→0

�t�−N g�t� = 0 (5.1)

and

lim sup
�t�→+�

�t� N
N−1 e

− N

K1/�N−1� �t� N
N−1

g�t� = 0 (5.2)

for some K > 0. Let �un�n≥1 ⊂ W 1� N
rad ��N � be such that ��un�N

N ≤ 
N−1K and assume that

un ⇀ u in W 1� N ��N �. The aim of this Section is to show that

G�un� − G�u� �=
∫
�N

g�un� − g�u�� dx → 0 as n → +��

First we remark that, from the assumptions on �un�n≥1, it follows that un → u a.e. in �N

and that �un�W 1� N ≤ C for some constant C > 0 independent of n.

Now, from the radial Sobolev lemma,

�v�r�� ≤
( N


N−1

) 1
N 1

r�N−1�/N
�v�W 1� N for a.e. r > 0

which holds for any v ∈ W 1� N
rad ��N �, we deduce that un�r� → 0 as r → +� uniformly with

respect to n. This together with (5.1) leads to conclude that for any � > 0 there exists R > 0

independent of n such that

∫
�N \BR

g�un� dx ≤ �
∫
�N \BR

�un�N dx � � and
∫
�N \BR

g�u� dx � �� (5.3)

31

D
ow

nl
oa

de
d 

by
 [

N
an

ya
ng

 T
ec

hn
ol

og
ic

al
 U

ni
ve

rs
ity

] 
at

 1
4:

13
 2

5 
A

pr
il 

20
15

 



A
c
c
e
p
te
d

M
a
n
u
s
c
ri
p
t

On the other hand, from (5.2), we deduce that for any � > 0 there exists L > 0 independent

of n such that

∫
��un�>L�

g�un� dx ≤ �
∫

��un�>L�

e
N

K1/�N−1� �un� N
N−1

�un� N
N−1

dx

and

∫
��un�>L�

g�u� dx ≤ �
∫

��un�>L�

e
N

K1/�N−1� �u� N
N−1

�u� N
N−1

dx�

Therefore, applying Theorem 1.5, we get

∫
��un�>L�

g�un� dx � ��un�N
N � � and

∫
��un�>L�

g�u� dx � �� (5.4)

Hence, combining (5.3) with (5.4), we have

�G�un� − G�u�� ≤
∫
�N \BR

+
∫

BR

�g�un� − g�u�� dx � � +
∫

BR

�g�un� − g�u�� dx

= � +
∫

BR∩��un�>L�
+
∫

BR∩��un�≤L�
�g�un� − g�u�� dx �

� � +
∫

BR∩��un�≤L�
�g�un� − g�u�� dx�

If we define

gL�t� �=
{

g�t� if �t� ≤ L�

g�L� if �t� > L�

then

lim
n→+� �G�un� − G�u�� � � + lim

n→+�

∫
BR

�gL�un� − gL�u�� dx � ��
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as a consequence of the Lebesgue dominated convergence theorem. Since � > 0 is arbitrary

fixed, the proof is complete.

6. FROM TRUDINGER-MOSER INEQUALITY WITH THE EXACT GROWTH TO

TRUDINGER-MOSER INQUALITY IN W 1� N ��N �

In this Section we show that Trudinger-Moser inequality with the exact growth condition

(1.4) implies Trudinger-Moser inequality in W 1� N ��N � (1.3).

Before proceeding with the proof, we point out that Adachi-Tanaka inequality (1.2) can be

deduced as a direct consequence of the Trudinger-Moser inequality with the exact growth

condition (1.4) and in particular this inequality tells us that

∫
�N

�N ��u� N
N−1 � dx ≤ CN�u�N

N ∀u ∈ W 1� N ��N �with ��u�N ≤ 1� (6.1)

Using the power series expansion of the exponential function together with Stirling’s

formula, it is easy to see that (6.1) implies that

��u� N
N−1 �p � p�u�

N
p

N ∀u ∈ W 1� N ��N �with ��u�N ≤ 1 (6.2)

for any integer p ≥ N − 1, then (6.2) can be extended to non-integers p ≥ N − 1, simply by

interpolation (see (7), Chapitre IV.2, Remarque 2).

Now let u ∈ W 1� N ��N �\�0� be such that �u�W 1� N ≤ 1, our aim is to prove that

∫
�N

�N �	N �u� N
N−1 � dx ≤ CN (6.3)
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for some constant CN > 0 independent of u. Let � ∈ �0� 1� be such that �u�N
N = �, so that

��u�N
N ≤ 1 − �. We distinguish two cases,

1st case � ≥ N−1
N

;

2nd case � < N−1
N

.

If � ≥ N−1
N

, we define ũ �= N
1
N u, so that

�ũ�N
N = N�u�N

N ≤ N and ��ũ�N
N = N��u�N

N ≤ N�1 − �� ≤ 1�

Applying Adachi-Tanaka inequality (1.2) to ũ, we get for any 	 ∈ �0� 	N �

∫
�N

�N �	N
1

N−1 �u� N
N−1 � dx ≤ C�	� N��ũ�N

N � C�	� N�

and, in particular, choosing 	 so that

	N
1

N−1 = 	N � i.e. 	 = N
N−2
N−1 


1
N−1
N−1 < N


1
N−1
N−1 = 	N �

we obtain the desired estimate (??).

Therefore, from now on, we will focus our attention to the case � < N−1
N

. Let

A �= �x ∈ �N � �u�x�� ≥ 1��

By construction �u� < 1 on �N\A and it is easy to see that

�N �t� ≤ CN tN−1 ∀t ∈ 0� 	N �
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for some constant CN > 0. Consequently,

∫
�N \A

�N �	N �u� N
N−1 � dx ≤ CN 	N−1

N

∫
�N \A

�u�N dx ≤ CN 	N−1
N �

Thus, to complete the proof, it remains only to show that

∫
A

�N �	N �u� N
N−1 � dx ≤ CN �

Since

�N �t��p ≤ �N �pt� ∀t ≥ 0� ∀p ≥ 1�

applying Hölder’s inequality, with 1 < p < +� to be suitably chosen, we get

∫
A

�N �	N �u� N
N−1 � dx ≤

(∫
A

�N �	N p�u� N
N−1 �

�1 + �u�� N
N−1

dx

) 1
p
(∫

A
�1 + �u�� N

�N−1��p−1�

) p−1
p

≤ 2
N

N−1

(∫
A

�N �	N p�u� N
N−1 �

�1 + �u�� N
N−1

dx

) 1
p

��u� N
N−1 �

1
p

1
p−1

�

Our choice of p is the following

p �= N − 1
�N − 1� − �

> 1�

In this way

1
p − 1

= �N − 1� − �

�
> N − 1

and, in view of (6.2), we have

��u� N
N−1 �

1
p

1
p−1

�
( 1

p − 1

) 1
p �u�N p−1

p

N � (6.4)
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Now, we let ũ �= p
N−1

N u. By construction we have

��ũ�N
N = pN−1��u�N

N ≤
( N − 1

�N − 1� − �

)N−1
�1 − �� =

[ �1 − ��
1

N−1

1 − �/�N − 1�

]N−1 ≤ 1

since �1 − A�q ≤ 1 − qA for any q, A ∈ 0� 1�. Consequently, we can apply the Trudinger-

Moser inequality with the exact growth condition (1.4) to ũ and this leads to

(∫
A

�N �	N p�u� N
N−1 �

�1 + �u�� N
N−1

dx

) 1
p

≤
(

p
∫

A

�N �	N �ũ� N
N−1 �

�1 + �ũ�� N
N−1

dx

) 1
p

� �p�ũ�N
N �

1
p = p

N
p �u�

N
p

N � (6.5)

In conclusion, combining (6.4) and (6.5), we obtain

∫
A

�N �	N �u� N
N−1 � dx � p

N−1
p

( p

p − 1

) 1
p �u�N

N �
�N−1+ �

N−1

�1 − �/�N − 1��N−1−�
�

and the right hand side of this last inequality is bounded by a constant depending only on

the dimension N , since 0 < � < N−1
N

.

7. EXISTENCE OF GROUND STATES

In this section, we study the following quasilinear elliptic equation

{
−�N u + c�u�N−2u = f�u� in �N � N ≥ 2�

u ∈ W 1� N ��N �� u > 0in �N
(7.1)

where c > 0 and the nonlinear term f satisfies the assumptions (f1), (f2) and (f2) of

Theorem 1.7. Since we look for positive solutions of (7.1), we may assume without loss of

generality that f = 0 on �−�� 0�.
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The natural functional associated to a variational approach to problem (7.1) is

Ic�u� �= 1
N

(��u�N
N + c�u�N

N

) −
∫
�N

F�u� dx ∀u ∈ W 1� N ��N ��

which is well defined and of class �1 on W 1� N ��N �. Our goal is to prove the existence of

ground state solutions for (7.1) and we recall that a solution u of (7.1) is a ground state if

Ic�u� = mc where

mc �= inf
{

Ic�u�
∣∣ u ∈ W 1� N ��N �\�0�is a solution of (7.1)

}

To this aim, motivated by the Pohozaev identity for equation (7.1), we introduce the

functional

Gc�u� �= c�u�N
N − N

∫
�N

F�u� dx ∀u ∈ W 1� N ��N �

and the constrained minimization problem

Ac �= inf
{ 1

N
��u�N

N

∣∣∣ u ∈ W 1� N ��N �\�0�� Gc�u� = 0
}

= inf
{

Ic�u�
∣∣ u ∈ W 1� N ��N �\�0�� Gc�u� = 0

} ≤ mc�

Some remarks are in order.

Remark 7.1. Let �c be the set consisting of all functions in W 1� N ��N �\�0� satisfying the

Pohozaev identity for equation (7.1), i.e.

�c �= {
u ∈ W 1� N ��N �

∣∣ u �= 0� Gc�u� = 0
}
�
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so that

Ac = inf
u∈�c

1
N

��u�N
N �

We point out that �c is not empty. In fact, let u ∈ W 1� N ��N �\�0� be compactly supported

and define

h�s� �= Gc�su� = csN�u�N
N − N

∫
�N

F�su� dx ∀s > 0� (7.2)

Then h�s� > 0 for s > 0 small enough, as a consequence of (f1) and (f2), while h�s� < 0 for

s > 0 sufficiently large, as a consequence of (f2). Therefore we get the existence of s0 > 0

satisfying h�s0u� = 0, which means that s0u ∈ �c.

Note also that for any fixed u ∈ W 1� N ��N �\�0�, the function h defined by (7.2) is strictly

positive for s > 0 small enough.

Remark 7.2. Given a minimizing sequence for Ac, that is a sequence �uk�k ⊂ �c satisfying

1
N

��uk�N
N → Ac as k → +��

we may always assume that �uk�k ⊂ W 1� N
rad ��N � and �uk�N = 1. This can be done simply by

Schwarz symmetrization and rescaling.
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Remark 7.3. If the infimum Ac is attained then the minimizer u ∈ W 1� N
rad ��N �\�0� is, under

a suitable change of scale, a ground state solution of (7.1). In fact, if u is a minimizer for

Ac then there exists a Lagrange multiplier � ∈ � such that

−�N u + c�u�N−2u − f�u� = �
(

c�u�N−2u − Nf�u�
)

in �N �

namely

−�N u = �N� − 1�
(

c�u�N−2u − f�u�
)

in �N �

Recalling that u ∈ �c,

∫
�N

(
c�u�N−2u − f�u�

)
u dx = c�u�N

N −
∫
�N

(
uf�u� ± NF�u�

)
dx

= −
∫
�N

(
uf�u� − NF�u�

)
dx < 0

as a consequence of (f1). Moreover,

∫
�N

u�N u dx < 0

and hence N� − 1 < 0. Therefore

ũ�x� �= u

(
x

�1 − N��1/N

)
for a.e. x ∈ �N

is a non-trivial solution of (7.1). Note also that ũ is a minimizer for Ac and thus ũ is a

ground state solution of (7.1).
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Following (18), we begin showing an interesting relation between the attainability of the

infimum Ac and the Trudinger-Moser inequality with the exact growth condition (Theorem

1.5). To this aim, as in (18), we introduce the Trudinger-Moser ratio

CA
TM�F� �= sup

{ N

�u�N
N

∫
�N

F�u� dx
∣∣∣ u ∈ W 1� N ��N �\�0�� ��u�N ≤ A

}
�

the Trudinger-Moser threshold

��F� �= sup� A > 0 � CA
TM�F� < +� �

and we denote by C�
TM�F� the ratio at the threshold, i.e.

C�
TM�F� �= C

��F�
TM �F��

From (f1) and (f2), it follows that

lim
t→+�

tN/�N−1�F�t�

e	tN/�N−1�
=

{
0 if 	 > 	0�

+� if 	 < 	0�
(7.3)

Moreover, (f1) implies

lim
t→0

F�t�

tN
= 0� (7.4)

Hence, from Theorem 1.5, we deduce that

��F� =
(	N

	0

)N−1
N

�
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Now, we can state a sufficient condition for the attainability of Ac in terms of the Trudinger-

Moser threshold ��F�.

Proposition 7.1. Let c > 0 and assume (f1), (f2) and (f2). If

Ac <

(
��F�

)N

N

then Ac is attained and Ac = Ic�u� where u ∈ W 1� N
rad ��N �\�0� is, under a suitable change of

scale, a ground state solution of equation (7.1).

Proof. Let �uk�k ⊂ W 1� N
rad ��N �\�0� be a minimizing sequence for Ac, namely �uk�N = 1,

uk ∈ �c for any k ≥ 1,

1
N

��uk�N
N → Ac as k → +�

and, we may assume that uk ⇀ u in W 1� N ��N � as k → +�.

Step 1. First, we prove that Ac > 0. Clearly Ac ≥ 0; by way of contradiction, we assume that

Ac = 0.

From (7.3) and (7.4), we deduce that F satisfies the growth condition (3) of the compactness

theorem (Theorem 1.6) for any K > 0 with N/K1/�N−1� > 	0 and, since ��uk�N → 0 as k →
+�, we get

∫
�N

F�uk� dx →
∫
�N

F�u� dx as k → +��
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Recalling that uk ∈ �c and �uk�N = 1, we have also

∫
�N

F�uk� dx = c/N ∀k ≥ 1�

Consequently,

∫
�N

F�u� dx = c

N
> 0� (7.5)

On the other hand,

0 = lim inf
k→+�

��uk�N ≥ ��u�N ≥ 0

and u = 0, which contradicts (7.5).

Step 2. Since

0 < NAc < � ��F� �N =
(	N

	0

)N−1
�

from (7.3), we deduce that

lim
�t�→+�

�t�N/�N−1�F�t�

e	�t�N/�N−1�
= 0 ∀	 ∈

(
	0�

	N

�NAc�
1/�N−1�

]
�

This together with (7.4) and

lim sup
k→+�

��uk�N
N = NAc

enable us to apply the compactness theorem (Theorem 1.6), which tells us that

∫
�N

F�uk� dx →
∫
�N

F�u� dx as k → +��
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Therefore, arguing as in (7.5), we get

∫
�N

F�u� dx = c

N
> 0

and u �= 0. Moreover,

1
N

��u�N
N ≤ lim inf

k→+�
1
N

��uk�N
N = Ac

and in order to prove that the infimum Ac is attained by u, it remains only to show that

Gc�u� = 0. Since

Gc�u� = c�u�N
N − N

∫
�N

F�u� dx = c�u�N
N − c ≤ lim inf

k→+�
c�uk�N

N − c = 0�

we argue by contradition assuming Gc�u� < 0. If we define

h�s� �= Gc�su� = csN�u�N
N − N

∫
�N

F�su� dx ∀s > 0�

then h�1� < 0 and, from Remark 7.1, we deduce that h�s� > 0 for s > 0 small enough.

Consequently, there exists s0 ∈ �0� 1� such that h�s0u� = 0, namely s0u ∈ �c, and hence

Ac ≤ 1
N

���s0u��N
N = sN

0

1
N

��u�N
N ≤ sN

0 Ac < Ac

a contradition. �

Remark 7.4. Note that the case 	0 =0, i.e.

lim
t→+�

f�t�

e	tN/�N−1�
= 0 ∀	 > 0� (7.6)
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corresponds to the subcritical exponential case. If the nonlinear term f satisfies the

assumptions of Proposition 7.1 with (f2) replaced by (7.6), then ��F� = +� and for any

c > 0 the infimum Ac is attained by a ground state solution of equation (7.1).

We have also an interesting connection between the attainability of Ac and the Trudinger-

Moser ratio at the threshold C�
TM�F�.

Proposition 7.2. Let c > 0 and assume (f1), (f2) and (f2). The constrained minimization

problem Ac associated to the functional Ic satisfies

Ac <

(
��F�

)N

N
(7.7)

if and only if

c < C�
TM�F�� (7.8)

Proof. First, we prove the sufficiency of (7.8), that is 0 < c < C�
TM�F� yields

Ac <

(
��F�

)N

N
�

We distinguish between the case C�
TM�F� < +� and C�

TM�F� = +�. In the case C�
TM�F� <

+�, since 0 < c < C�
TM�F�, we have that c < C�

TM�F� − �0 for some �0 > 0. From the

definition of C�
TM�F�, there exists u0 ∈ W 1� N ��N �\�0� with ��u0�N ≤ ��F� satisfying

C�
TM�F� − �0 ≤ N

�u0�N
N

∫
�N

F�u0� dx�
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and hence

c <
N

�u0�N
N

∫
�N

F�u0� dx� (7.9)

namely Gc�u0� < 0. Let h�s� �= Gc�su0� for s > 0; since h�1� < 0 and h�s� > 0 for s > 0

small enough (see Remark 7.1), there exists s0 ∈ �0� 1� satisfying h�s0u0� = 0. Consequently,

s0u0 ∈ �c and

Ac ≤ 1
N

���s0u0��N
N = sN

0

1
N

��u0�N
N ≤ sN

0

� ��F� �N

N
<

� ��F� �N

N
�

In the case C�
TM�F� = +�, for any c > 0 there exists u0 ∈ W 1� N ��N �\�0� with ��u0�N ≤

��F� and satisfying (7.9). Hence we can repeat the same arguments as above to get the

conclusion.

Now we prove the necessity of (7.8), that is (7.7) implies (7.8). Let c > 0 and assume

that (7.7) holds. Obviously, if C�
TM�F� = +� then c < C�

TM�F� and the proof is complete.

Therefore, without loss of generality, we may assume that C�
TM�F� < +�. Since the

assumptions of Proposition 7.1 are satisfied, we have the existence of a minimizer u ∈
W 1� N

rad ��N �\�0� for Ac satisfying ��u�N < ��F� and Gc�u� = 0, i.e.

c = N

�u�N
N

∫
�N

F�u� dx

We introduce the function

g�s� �= N

sN�u�N
N

∫
�N

F�su� dx ∀s > 0�
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so that g�1� = c and, using (f1), it is easy to see that g is monotone increasing. If we set

ũ �= ��F�

��u�N

u

then ��ũ�N = ��F� and

C�
TM�F� ≥ N

�ũ�N
N

∫
�N

F�ũ� dx = g

(
��F�

��u�N

)
> g�1� = c

�

Before proceeding to the proof of Theorem 1.7, we recall that in (19) the authors enlighten

an interesting relation between the existence of solutions to problem (7.1) in the semilinear

case N = 2 and their Trudinger-Moser inequality with the exact growth in �2.

Theorem 7.3 ((19), Theorem 5.1). Let N = 2 and assume that f satisfies (f1), (f2) and (f2).

Then there exists c∗ ∈ �0� +�� such that, for each c ∈ �0� c∗�, equation (7.1) admits a positive

radial solution which has the least energy among all the solutions of (7.1). Moreover, c∗ =
C�

TM�F� when C�
TM�F� < +�, while c∗ = +� is equivalent to

lim
t→+�

t2F�t�

e	0t2 = +��
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In view of the Trudinger-Moser inequality with the exact growth in �N (Theorem 1.5), we

can obtain a similar result in the general quasilinear case N ≥ 3 and thus, in particular, we

can prove Theorem 1.7.

Theorem 7.4. Let N ≥ 3 and assume that f satisfies (f1), (f2) and (f2). Then there exists c∗ ∈
�0� +�� such that, for each c ∈ �0� c∗�, equation (7.1) admits a positive radial solution which

has the least energy among all the solutions of (7.1). Moreover, c∗ = C�
TM�F� when C�

TM�F� <

+�, while c∗ = +� is equivalent to

lim
t→+�

tN/�N−1�F�t�

e	0tN/�N−1�
= +�� (7.10)

The proof of Theorem 7.4 follows the same line of (19, Theorem 5.1), but we briefly sketch

it for the convenience of the reader.

Proof. If 0 < c < C�
TM�F� then in view of Proposition 7.2

Ac <

(
��F�

)N

N

Hence the assumptions of Proposition 7.1 are fulfilled and we get the existence of a ground

state solution of equation (7.1). Moreover, recalling (7.4) and in light of Theorem 1.5, we

can easily see that C�
TM�F� = +� if and only if (7.10) holds. �
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8. OTHER SUFFICIENT CONDITIONS FOR THE EXISTENCE OF GROUND

STATES

In Section 7, we showed that for problems of the form (7.1), where c > 0 and f satisfies

(f1), (f2) and (f2) of Theorem 1.7, the additional growth condition on the nonlinear term f

lim
t→+�

tN/�N−1�F�t�

e	0tN/�N−1�
= +� (8.1)

is a sufficient condition for the existence of a ground state solution. Now, we propose some

sufficient conditions that can be considered alternatively to (8.1).

First, we recall the results obtained in (6) and (29) for the semilinear case

{
−�u + u = f�u� in �2�

u ∈ W 1�2��2�� u > 0 in �2�
(8.2)

where f satisfies the assumptions (f1), (f2) and (f2) of Theorem 1.7 with N = 2. Both the

papers (6) and (29) concern the existence of ground state solutions for problem (8.2). In

(6), the existence is obtained by means of the following additional growth condition on the

nonlinearity f :

∃ q > 2such that f�t� ≥ �tq−1 ∀t ≥ 0� where � >
(q − 2

q

) q−2
2
( 	0

4�

) q−2
2

Cq/2
q � (8.3)

Here, the constant Cq is defined as

Cq �= inf
u∈W 1�2��2�\�0�

��u�2
2 + �u�2

2

�u�2
q

�

Note that, since f has exponential growth at infinity (f2), assumption (8.3) only prescribes

the growth of f near the origin. Instead in (29), the existence of a ground state solution for
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(8.2) follows from an additional growth condition at infinity and more precisely from the

assumption

lim
t→+�

tf�t�

e	0t2 = �0 >
2
	0

e� (8.4)

(Note the flaw there: it is not sufficient that �0 > 0 and the condition �0 > �2/	0�e is

needed.)

The arguments of the proofs in (6) and (29) can easily be adapted to study the general

quasilinear case (7.1) where c > 0 and f satisfies (f1), (f2) and (f2) of Theorem 1.7 together

with an analogue of the growth condition (8.3) or (8.4) for the N -dimensional case.

In fact, since c > 0, the quantity

�u�c �= (��u�N
N + c�u�N

N

)1/N ∀u ∈ W 1� N ��N �

defines a norm on W 1� N ��N � which is equivalent to the standard one. The functional Ic ∈
�1�W 1� N ��N �� associated to a variational approach to problem (7.1), i.e.

Ic�u� �= 1
N

�u�N
c −

∫
�N

F�u� dx ∀u ∈ W 1� N ��N ��

has a mountain pass geometry, that is

Proposition 8.1. Let N ≥ 3, c > 0 and assume that f satisfies (f1), (f2) and (f2). Then

• Ic�0� = 0,

• ∃ �� a > 0 such that Ic�u� ≥ a > 0 ∀u ∈ W 1� N ��N � with �u�c = �,

• ∃u0 ∈ W 1� N ��N � such that �u0�c > � and Ic�u0� < 0.

49

D
ow

nl
oa

de
d 

by
 [

N
an

ya
ng

 T
ec

hn
ol

og
ic

al
 U

ni
ve

rs
ity

] 
at

 1
4:

13
 2

5 
A

pr
il 

20
15

 



A
c
c
e
p
te
d

M
a
n
u
s
c
ri
p
t

If we denote by bc ∈ � the mountain pass level of the functional Ic, i.e.

bc �= inf
�∈�

sup
t∈0�1�

Ic� ��t��

where

� �=
{
� ∈ ��0� 1�� W 1� N ��N ��

∣∣∣��0� = 0� Ic���t�� < 0
}
�

then the following relation between bc and the constrained minimization problem Ac,

introduced in Section 7, holds:

Ac ≤ bc� (8.5)

To prove the above inequality it suffices to argue as in (29, Lemma 7) and apply (15,

Lemma 2.5)

In view of (8.5) and Proposition 7.1, in order to obtain the existence of a ground state

solution for (7.1), it is enough to get some suitable upper bound for the mountain pass level

bc and more precisely

bc <
���F��N

N
= 1

N

(	N

	0

)N−1
(8.6)

Let

Cq �= inf
u∈W 1� N ��N �\�0�

�u�N
c

�u�N
q

= inf
u∈W 1� N ��N �\�0�

��u�N
N + c�u�N

N

�u�N
q

�

which is attained by some non-negative radial function u ∈ W 1� N ��N �\�0� provided q >

N (see for instance (32, Proposition 7.2)). If the nonlinear term f satisfies the additional
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growth condition

∃ q > N such that f�t� ≥ �tq−1 ∀t ≥ 0�

(8.7)

where � >
(q − N

q

) q−N
N
( 	0

	N

)N−1
N �q−N�

Cq/N
q �

then, arguing as in (6, Lemma 3.7) and using the fact that Cq is attained when q > N , it is

easy to get the desired estimate (8.6).

Instead of (8.7), one may also assume the following growth condition at infinity

lim
t→+�

tf�t�

e	0tN/�N−1�
= �0 > �N − 2�! N

	N−1
0

ec� (8.8)

In this case the upper bound for the mountain pass level (8.6) can be obtained as in (29) (see

also (31, Section 3.2) and (21, Lemma 3.6)) by means of an estimate involving the Moser’s

sequence of functions.

Therefore, we can finally state the following result

Theorem 8.2. Let c > 0 and consider the quasilinear equation

−�N u + c�u�N−2u = f�u� in �N � N ≥ 2� (8.9)

We assume that f satisfies the conditions (f1), (f2) and (f2). Then the growth conditions (8.7)

and (8.8) are both sufficient to get the existence of a positive radial solution u ∈ W 1� N ��N � of

(8.9) which has the least energy among all the solutions.
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Remark 8.1. Note that both conditions (8.7) and (8.8) entail a relation between the

choice of the constant potential c > 0 appearing in equation (8.9) and the growth of the

nonlinearity f .

Remark 8.2. It seems to be difficult to compare the growth condition (8.7) with (8.8). The

point is that (8.8) allows to control the growth of the nonlinear term f at infinity while

(8.7) prescribes the growth of f near the origin. However, a comparison between these

conditions can be seen in terms of the Trudinger-Moser supremum C�
TM �F�. In fact, both

the conditions (8.7) and (8.8) yield the existence of a ground state solution for (8.9) by

means of the following property of the constrained minimization problem Ac associated to

(8.9)

Ac <

(
��F�

)N

N
�

(see (8.5) and (8.6)). In view of Proposition 7.2 the above estimate is equivalent to

c < C�
TM�F��

even if we do not know whether or not C�
TM �F� = +�. In other words the growth

conditions (8.7) and (8.8) implies that the constant potential c > 0 appearing in equation

(8.9) satisfies c < C�
TM �F�.
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