Unabsorbed proteins reach the colon and are fermented by the microbiota, yielding a variety of harmful metabolites. In the present study, a 16S rRNA gene survey identified the bacterial taxa flourishing in 11 batch fermentations with proteins and peptones as the sole fermentable substrates, inoculated with the feces of six healthy adults. Organic acids, ammonia, and indole resulting from protein breakdown and fermentation accumulated in all of the cultures. Analysis of differential abundances among time-points identified Enterobacteriaceae, Burkholderiaceae, and Desulfovibrionaceae (including Esherichia-Shigella, Sutterella, Parasutterella, and Bilophila) among the bacteria that especially in the cultures with low inoculation load. Lachnospiraceae and Ruminococcaceae also encompassed many taxa that significantly expanded, mainly in cultures inoculated with high inoculation load, and showed the strongest correlation with the production of ammonium, indole, and p-cresol. Anaerotruncus, Dorea, Oscillibacter, Eubacterium oxidoreducens, Lachnoclostridium, Paeniclostridium, and Rombutsia were among them. Other Firmicutes (e.g., Roseburia, Ruminococcus, Lachnospira, Dialister, Erysipelotrichaceae, and Streptococcaceae) and many Bacteroidetes (e.g., Barnesiellaceae, Prevotellaceae, and Rickenelliaceae) decreased. Sequences attributed to Bacteroides, unresolved at the level of species, presented opposite contributions, resulting in no significant changes in the genus. This study sheds light on the multitude of bacterial taxa putatively participating in protein catabolism in the colon. Protein fermentation was confirmed as unfavorable to health, due to both the production of toxic metabolites and the blooming of opportunistic pathogens and pro-inflammatory bacteria.

Profiling of Protein Degraders in Cultures of Human Gut Microbiota / Amaretti, Alberto; Gozzoli, Caterina; Simone, Marta; Raimondi, Stefano; Righini, Lucia; Pérez-Brocal, Vicente; García-López, Rodrigo; Moya, Andrés; Rossi, Maddalena. - In: FRONTIERS IN MICROBIOLOGY. - ISSN 1664-302X. - 10:(2019), pp. 1-13. [10.3389/fmicb.2019.02614]

Profiling of Protein Degraders in Cultures of Human Gut Microbiota

Amaretti, Alberto;Gozzoli, Caterina;Simone, Marta;Raimondi, Stefano;Righini, Lucia;Rossi, Maddalena
2019

Abstract

Unabsorbed proteins reach the colon and are fermented by the microbiota, yielding a variety of harmful metabolites. In the present study, a 16S rRNA gene survey identified the bacterial taxa flourishing in 11 batch fermentations with proteins and peptones as the sole fermentable substrates, inoculated with the feces of six healthy adults. Organic acids, ammonia, and indole resulting from protein breakdown and fermentation accumulated in all of the cultures. Analysis of differential abundances among time-points identified Enterobacteriaceae, Burkholderiaceae, and Desulfovibrionaceae (including Esherichia-Shigella, Sutterella, Parasutterella, and Bilophila) among the bacteria that especially in the cultures with low inoculation load. Lachnospiraceae and Ruminococcaceae also encompassed many taxa that significantly expanded, mainly in cultures inoculated with high inoculation load, and showed the strongest correlation with the production of ammonium, indole, and p-cresol. Anaerotruncus, Dorea, Oscillibacter, Eubacterium oxidoreducens, Lachnoclostridium, Paeniclostridium, and Rombutsia were among them. Other Firmicutes (e.g., Roseburia, Ruminococcus, Lachnospira, Dialister, Erysipelotrichaceae, and Streptococcaceae) and many Bacteroidetes (e.g., Barnesiellaceae, Prevotellaceae, and Rickenelliaceae) decreased. Sequences attributed to Bacteroides, unresolved at the level of species, presented opposite contributions, resulting in no significant changes in the genus. This study sheds light on the multitude of bacterial taxa putatively participating in protein catabolism in the colon. Protein fermentation was confirmed as unfavorable to health, due to both the production of toxic metabolites and the blooming of opportunistic pathogens and pro-inflammatory bacteria.
10
1
13
Profiling of Protein Degraders in Cultures of Human Gut Microbiota / Amaretti, Alberto; Gozzoli, Caterina; Simone, Marta; Raimondi, Stefano; Righini, Lucia; Pérez-Brocal, Vicente; García-López, Rodrigo; Moya, Andrés; Rossi, Maddalena. - In: FRONTIERS IN MICROBIOLOGY. - ISSN 1664-302X. - 10:(2019), pp. 1-13. [10.3389/fmicb.2019.02614]
Amaretti, Alberto; Gozzoli, Caterina; Simone, Marta; Raimondi, Stefano; Righini, Lucia; Pérez-Brocal, Vicente; García-López, Rodrigo; Moya, Andrés; Rossi, Maddalena
File in questo prodotto:
File Dimensione Formato  
2019 Proteolitici.pdf

accesso aperto

Descrizione: File open source
Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 6.8 MB
Formato Adobe PDF
6.8 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/1184342
Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 34
social impact