In the field of wound healing, stem cell-based strategies are gaining importance for their regenerative potential. Adipose-derived stem cells (ADSCs) are a particular subset of mesenchymal stem cells present in the stromal-vascular fraction of the adipose tissue, today considered very attractive for their relative abundance and accessibility in the human body. However, ADSCs are still not routinely used in normal clinical practice. Several studies have also reported ADSC transplantation in association with biomaterials in an attempt to enhance the local retention and growth rate of the cells. The aim of our study was to evaluate the ability of ADSCs to build a dermal scaffold to be potentially used as a dermal substitute in the field of wound healing, with optimal biocompatibility and mechanical properties. ADSCs were defined as CD90-, CD73-, and CD105-positive cells. ADSCs turned out to be capable of secreting all the main components of the extracellular matrix (ECM) upon stimulation, thus efficiently producing a collagen and fibronectin-containing dermal matrix. We also checked whether the ADSC-produced dermal scaffold could be seeded with keratinocytes. The scaffolding material directly produced by ADSCs has several advantages when compared to the commercially available ones: it is easily obtained from the patients and it is 100% biocompatible and supports cell-ECM interaction. Moreover, it represents a possible powerful therapeutic tool for patients with chronic ulcers since it appears to be potentially grafted with keratinocytes layers, thus bypassing the classical two-step grafting procedure.
In vitro Engineering of a Skin Substitute Based on Adipose-Derived Stem Cells / Paganelli, A.; Benassi, L.; Pastar, I.; Pellegrini, M.; Azzoni, P.; Vaschieri, C.; Pisciotta, A.; Carnevale, G.; Pellacani, G.; Magnoni, C.. - In: CELLS TISSUES ORGANS. - ISSN 1422-6405. - 207:1(2019), pp. 46-57. [10.1159/000501071]
In vitro Engineering of a Skin Substitute Based on Adipose-Derived Stem Cells
Paganelli A.;Benassi L.;Pellegrini M.;Azzoni P.;Vaschieri C.;Pisciotta A.;Carnevale G.;Pellacani G.;Magnoni C.
2019
Abstract
In the field of wound healing, stem cell-based strategies are gaining importance for their regenerative potential. Adipose-derived stem cells (ADSCs) are a particular subset of mesenchymal stem cells present in the stromal-vascular fraction of the adipose tissue, today considered very attractive for their relative abundance and accessibility in the human body. However, ADSCs are still not routinely used in normal clinical practice. Several studies have also reported ADSC transplantation in association with biomaterials in an attempt to enhance the local retention and growth rate of the cells. The aim of our study was to evaluate the ability of ADSCs to build a dermal scaffold to be potentially used as a dermal substitute in the field of wound healing, with optimal biocompatibility and mechanical properties. ADSCs were defined as CD90-, CD73-, and CD105-positive cells. ADSCs turned out to be capable of secreting all the main components of the extracellular matrix (ECM) upon stimulation, thus efficiently producing a collagen and fibronectin-containing dermal matrix. We also checked whether the ADSC-produced dermal scaffold could be seeded with keratinocytes. The scaffolding material directly produced by ADSCs has several advantages when compared to the commercially available ones: it is easily obtained from the patients and it is 100% biocompatible and supports cell-ECM interaction. Moreover, it represents a possible powerful therapeutic tool for patients with chronic ulcers since it appears to be potentially grafted with keratinocytes layers, thus bypassing the classical two-step grafting procedure.File | Dimensione | Formato | |
---|---|---|---|
501071.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.6 MB
Formato
Adobe PDF
|
2.6 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris