Massively parallel nanosensor arrays fabricated with low-cost CMOS technology represent powerful platforms for biosensing in the Internet-of-Things (IoT) and Internet-of-Health (IoH) era. They can efficiently acquire "big data" sets of dependable calibrated measurements, representing a solid basis for statistical analysis and parameter estimation. In this paper we propose Bayesian estimation methods to extract physical parameters and interpret the statistical variability in the measured outputs of a dense nanocapacitor array biosensor. Firstly, the physical and mathematical models are presented. Then, a simple 1D-symmetry structure is used as a validation test case where the estimated parameters are also known a-priori. Finally, we apply the methodology to the simultaneous extraction of multiple physical and geometrical parameters from measurements on a CMOS pixelated nanocapacitor biosensor platform. (C) 2019 Elsevier Inc. All rights reserved.
Bayesian estimation of physical and geometrical parameters for nanocapacitor array biosensors / Stadlbauer, B.; Cossettini, A.; Morales, E. J. A.; Pasterk, D.; Scarbolo, P.; Taghizadeh, L.; Heitzinger, C.; Selmi, L.. - In: JOURNAL OF COMPUTATIONAL PHYSICS. - ISSN 0021-9991. - 397:(2019), pp. 108874-108895. [10.1016/j.jcp.2019.108874]
Bayesian estimation of physical and geometrical parameters for nanocapacitor array biosensors
Selmi L.
2019
Abstract
Massively parallel nanosensor arrays fabricated with low-cost CMOS technology represent powerful platforms for biosensing in the Internet-of-Things (IoT) and Internet-of-Health (IoH) era. They can efficiently acquire "big data" sets of dependable calibrated measurements, representing a solid basis for statistical analysis and parameter estimation. In this paper we propose Bayesian estimation methods to extract physical parameters and interpret the statistical variability in the measured outputs of a dense nanocapacitor array biosensor. Firstly, the physical and mathematical models are presented. Then, a simple 1D-symmetry structure is used as a validation test case where the estimated parameters are also known a-priori. Finally, we apply the methodology to the simultaneous extraction of multiple physical and geometrical parameters from measurements on a CMOS pixelated nanocapacitor biosensor platform. (C) 2019 Elsevier Inc. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
FinalPublishedJCPpaper1.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
2.91 MB
Formato
Adobe PDF
|
2.91 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris