Integrals of the Calculus of Variations with p, q-growth may have not smooth minimizers, not even bounded, for general p, q exponents. In this paper we consider the scalar case, which contrary to the vector-valued one allows us not to impose structure conditions on the integrand f (x, ξ) with dependence on the modulus of the gradient, i.e. f(x , ξ) = g (x,|ξ|). Without imposing structure conditions, we prove that if q p is sufficiently close to 1, then every minimizer is locally Lipschitz-continuous.
Regularity for scalar integrals without structure conditions / Eleuteri, M.; Marcellini, P.; Mascolo, E.. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - 13:3(2020), pp. 279-300. [10.1515/acv-2017-0037]
Regularity for scalar integrals without structure conditions
Eleuteri M.;
2020
Abstract
Integrals of the Calculus of Variations with p, q-growth may have not smooth minimizers, not even bounded, for general p, q exponents. In this paper we consider the scalar case, which contrary to the vector-valued one allows us not to impose structure conditions on the integrand f (x, ξ) with dependence on the modulus of the gradient, i.e. f(x , ξ) = g (x,|ξ|). Without imposing structure conditions, we prove that if q p is sufficiently close to 1, then every minimizer is locally Lipschitz-continuous.File | Dimensione | Formato | |
---|---|---|---|
10.1515_acv-2017-0037.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
733 kB
Formato
Adobe PDF
|
733 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris