Integrals of the Calculus of Variations with p, q-growth may have not smooth minimizers, not even bounded, for general p, q exponents. In this paper we consider the scalar case, which contrary to the vector-valued one allows us not to impose structure conditions on the integrand f (x, ξ) with dependence on the modulus of the gradient, i.e. f(x , ξ) = g (x,|ξ|). Without imposing structure conditions, we prove that if q p is sufficiently close to 1, then every minimizer is locally Lipschitz-continuous.

Regularity for scalar integrals without structure conditions / Eleuteri, M.; Marcellini, P.; Mascolo, E.. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - 13:3(2020), pp. 279-300. [10.1515/acv-2017-0037]

Regularity for scalar integrals without structure conditions

Eleuteri M.;
2020

Abstract

Integrals of the Calculus of Variations with p, q-growth may have not smooth minimizers, not even bounded, for general p, q exponents. In this paper we consider the scalar case, which contrary to the vector-valued one allows us not to impose structure conditions on the integrand f (x, ξ) with dependence on the modulus of the gradient, i.e. f(x , ξ) = g (x,|ξ|). Without imposing structure conditions, we prove that if q p is sufficiently close to 1, then every minimizer is locally Lipschitz-continuous.
2020
16-mar-2018
13
3
279
300
Regularity for scalar integrals without structure conditions / Eleuteri, M.; Marcellini, P.; Mascolo, E.. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - 13:3(2020), pp. 279-300. [10.1515/acv-2017-0037]
Eleuteri, M.; Marcellini, P.; Mascolo, E.
File in questo prodotto:
File Dimensione Formato  
10.1515_acv-2017-0037.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 733 kB
Formato Adobe PDF
733 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1179996
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 52
social impact