Background and Purpose: Targeting more than one opioid receptor type simultaneously may have analgesic advantages in reducing side-effects. We have evaluated the mixed μ opioid receptor agonist/ δ opioid receptor antagonist UFP-505 in vitro and in vivo. Experimental Approach: We measured receptor density and function in single μ, δ and μ /δ receptor double expression systems. GTPγ35S binding, cAMP formation and arrestin recruitment were measured. Antinociceptive activity was measured in vivo using tail withdrawal and paw pressure tests following acute and chronic treatment. In some experiments, we collected tissues to measure receptor densities. Key Results: UFP-505 bound to μ receptors with full agonist activity and to δ receptors as a low efficacy partial agonist At μ, but not δ receptors, UFP-505 binding recruited arrestin. Unlike morphine, UFP-505 treatment internalized μ receptors and there was some evidence for internalization of δ receptors. Similar data were obtained in a μ /δ receptor double expression system. In rats, acute UFP-505 or morphine, injected intrathecally, was antinociceptive. In tissues harvested from these experiments, μ and δ receptor density was decreased after UFP-505 but not morphine treatment, in agreement with in vitro data. Both morphine and UFP-505 induced significant tolerance. Conclusions and Implications: In this study, UFP-505 behaved as a full agonist at μ receptors with variable activity at δ receptors. This bifunctional compound was antinociceptive in rats after intrathecal administration. In this model, dual targeting provided no advantages in terms of tolerance liability. Linked Articles: This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.

In vitro and in vivo characterization of the bifunctional μ and δ opioid receptor ligand UFP-505 / Dietis, N.; Niwa, H.; Tose, R.; Mcdonald, J.; Ruggieri, V.; Filaferro, M.; Vitale, G.; Micheli, L.; Ghelardini, C.; Salvadori, S.; Calo', Giovanni Fabrizio; Guerrini, Remo; Rowbotham, D. J.; Lambert, D. G.. - In: BRITISH JOURNAL OF PHARMACOLOGY. - ISSN 0007-1188. - 175:14(2018), pp. 2881-2896. [10.1111/bph.14199]

In vitro and in vivo characterization of the bifunctional μ and δ opioid receptor ligand UFP-505

Ruggieri, V.;Filaferro, M.;Vitale, G.;CALO', Giovanni Fabrizio;GUERRINI, REMO;
2018

Abstract

Background and Purpose: Targeting more than one opioid receptor type simultaneously may have analgesic advantages in reducing side-effects. We have evaluated the mixed μ opioid receptor agonist/ δ opioid receptor antagonist UFP-505 in vitro and in vivo. Experimental Approach: We measured receptor density and function in single μ, δ and μ /δ receptor double expression systems. GTPγ35S binding, cAMP formation and arrestin recruitment were measured. Antinociceptive activity was measured in vivo using tail withdrawal and paw pressure tests following acute and chronic treatment. In some experiments, we collected tissues to measure receptor densities. Key Results: UFP-505 bound to μ receptors with full agonist activity and to δ receptors as a low efficacy partial agonist At μ, but not δ receptors, UFP-505 binding recruited arrestin. Unlike morphine, UFP-505 treatment internalized μ receptors and there was some evidence for internalization of δ receptors. Similar data were obtained in a μ /δ receptor double expression system. In rats, acute UFP-505 or morphine, injected intrathecally, was antinociceptive. In tissues harvested from these experiments, μ and δ receptor density was decreased after UFP-505 but not morphine treatment, in agreement with in vitro data. Both morphine and UFP-505 induced significant tolerance. Conclusions and Implications: In this study, UFP-505 behaved as a full agonist at μ receptors with variable activity at δ receptors. This bifunctional compound was antinociceptive in rats after intrathecal administration. In this model, dual targeting provided no advantages in terms of tolerance liability. Linked Articles: This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
2018
14-mag-2018
175
14
2881
2896
In vitro and in vivo characterization of the bifunctional μ and δ opioid receptor ligand UFP-505 / Dietis, N.; Niwa, H.; Tose, R.; Mcdonald, J.; Ruggieri, V.; Filaferro, M.; Vitale, G.; Micheli, L.; Ghelardini, C.; Salvadori, S.; Calo', Giovanni Fabrizio; Guerrini, Remo; Rowbotham, D. J.; Lambert, D. G.. - In: BRITISH JOURNAL OF PHARMACOLOGY. - ISSN 0007-1188. - 175:14(2018), pp. 2881-2896. [10.1111/bph.14199]
Dietis, N.; Niwa, H.; Tose, R.; Mcdonald, J.; Ruggieri, V.; Filaferro, M.; Vitale, G.; Micheli, L.; Ghelardini, C.; Salvadori, S.; Calo', Giovanni Fabrizio; Guerrini, Remo; Rowbotham, D. J.; Lambert, D. G.
File in questo prodotto:
File Dimensione Formato  
bph.14199.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
post_print_bph.14199.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 948.17 kB
Formato Adobe PDF
948.17 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1176850
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact