We present the first fabrication of electronic synapses using two dimensional (2D) hexagonal boron nitride (/j-BN) as active switching layer. The main advantage of these devices compared to the transition metal oxide (TMO) based counterparts is that multilayer h-BN stacks show both volatile and non-volatile resistive switching (RS) depending on the programming stresses applied, which allows implementing short-term (STP) and long-term plasticity (LTP) rules using a single device and without the need of complex architectures.
Coexistence of volatile and non-volatile resistive switching in 2D h-BN based electronic synapses / Shi, Y.; Pan, C.; Chen, V.; Raghavan, N.; Pey, K. L.; Puglisi, F. M.; Pop, E.; Wong, H. -S. P.; Lanza, M.. - (2018), pp. 5.4.1-5.4.4. (Intervento presentato al convegno 63rd IEEE International Electron Devices Meeting, IEDM 2017 tenutosi a USA nel 2017) [10.1109/IEDM.2017.8268333].
Coexistence of volatile and non-volatile resistive switching in 2D h-BN based electronic synapses
Puglisi, F. M.;
2018
Abstract
We present the first fabrication of electronic synapses using two dimensional (2D) hexagonal boron nitride (/j-BN) as active switching layer. The main advantage of these devices compared to the transition metal oxide (TMO) based counterparts is that multilayer h-BN stacks show both volatile and non-volatile resistive switching (RS) depending on the programming stresses applied, which allows implementing short-term (STP) and long-term plasticity (LTP) rules using a single device and without the need of complex architectures.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris