Pancreatic cancer is the fourth leading cause of cancer death in western countries with more than 100,000 new cases per year in Europe and a mortality rate higher than 90%. In this scenario, advanced therapies based on gene therapies are emerging, thanks to a better understanding of tumour architecture and cancer cell alterations. We have demonstrated the efficacy of an innovative approach for pancreatic cancer based on mesenchymal stromal cells (MSC) genetically engineered to produce TNF-related Apoptosis Inducing Ligand (TRAIL). Here we investigated the combination of this MSC-based approach with the administration of a paclitaxel (PTX)-based chemotherapy to improve the potential of the treatment, also accounting for a possible resistance onset. Methods: Starting from the BXPC3 cell line, we generated and profiled a TRAIL-resistant model of pancreatic cancer, testing the impact of the combined treatment in vitro with specific cytotoxicity and metabolic assays. We then challenged the rationale in a subcutaneous mouse model of pancreatic cancer, assessing its effect on tumour size accounting stromal and parenchymal organization. Results: PTX was able to restore pancreatic cancer sensitivity to MSC-delivered TRAIL by reverting its pro-survival gene expression profile. The two compounds cooperate both in vitro and in vivo and the combined treatment resulted in an improved cytotoxicity on tumour cells. Conclusion: In summary, this study uncovers the potential of a combinatory approach between MSC-delivered TRAIL and PTX, supporting the combination of cell-based products and conventional chemotherapeutics as a tool to improve the efficacy of the treatments, also addressing possible mechanisms of resistance.

MSC-delivered soluble TRAIl and paclitaxel as novel combinatory treatment for pancreatic adenocarcinoma / Rossignoli, Filippo; Spano, Carlotta; Grisendi, Giulia; Foppiani, Elisabetta Manuela; Golinelli, Giulia; Mastrolia, Ilenia; Bestagno, Marco; Candini, Olivia; Petrachi, Tiziana; Recchia, Alessandra; Miselli, Francesca; Rovesti, Giulia; Orsi, Giulia; Veronesi, Elena; Medici, Gregorio; Petocchi, Benedetta; Pinelli, Massimo; Horwitz, Edwin M.; Conte, Pierfranco; Dominici, Massimo. - In: THERANOSTICS. - ISSN 1838-7640. - 9:2(2019), pp. 436-448. [10.7150/thno.27576]

MSC-delivered soluble TRAIl and paclitaxel as novel combinatory treatment for pancreatic adenocarcinoma

Rossignoli, Filippo;Spano, Carlotta;Grisendi, Giulia;Foppiani, Elisabetta Manuela;Golinelli, Giulia;Mastrolia, Ilenia;Candini, Olivia;Petrachi, Tiziana;Recchia, Alessandra;Rovesti, Giulia;Orsi, Giulia;Veronesi, Elena;Medici, Gregorio;Conte, Pierfranco;Dominici, Massimo
2019

Abstract

Pancreatic cancer is the fourth leading cause of cancer death in western countries with more than 100,000 new cases per year in Europe and a mortality rate higher than 90%. In this scenario, advanced therapies based on gene therapies are emerging, thanks to a better understanding of tumour architecture and cancer cell alterations. We have demonstrated the efficacy of an innovative approach for pancreatic cancer based on mesenchymal stromal cells (MSC) genetically engineered to produce TNF-related Apoptosis Inducing Ligand (TRAIL). Here we investigated the combination of this MSC-based approach with the administration of a paclitaxel (PTX)-based chemotherapy to improve the potential of the treatment, also accounting for a possible resistance onset. Methods: Starting from the BXPC3 cell line, we generated and profiled a TRAIL-resistant model of pancreatic cancer, testing the impact of the combined treatment in vitro with specific cytotoxicity and metabolic assays. We then challenged the rationale in a subcutaneous mouse model of pancreatic cancer, assessing its effect on tumour size accounting stromal and parenchymal organization. Results: PTX was able to restore pancreatic cancer sensitivity to MSC-delivered TRAIL by reverting its pro-survival gene expression profile. The two compounds cooperate both in vitro and in vivo and the combined treatment resulted in an improved cytotoxicity on tumour cells. Conclusion: In summary, this study uncovers the potential of a combinatory approach between MSC-delivered TRAIL and PTX, supporting the combination of cell-based products and conventional chemotherapeutics as a tool to improve the efficacy of the treatments, also addressing possible mechanisms of resistance.
2019
9
2
436
448
MSC-delivered soluble TRAIl and paclitaxel as novel combinatory treatment for pancreatic adenocarcinoma / Rossignoli, Filippo; Spano, Carlotta; Grisendi, Giulia; Foppiani, Elisabetta Manuela; Golinelli, Giulia; Mastrolia, Ilenia; Bestagno, Marco; Candini, Olivia; Petrachi, Tiziana; Recchia, Alessandra; Miselli, Francesca; Rovesti, Giulia; Orsi, Giulia; Veronesi, Elena; Medici, Gregorio; Petocchi, Benedetta; Pinelli, Massimo; Horwitz, Edwin M.; Conte, Pierfranco; Dominici, Massimo. - In: THERANOSTICS. - ISSN 1838-7640. - 9:2(2019), pp. 436-448. [10.7150/thno.27576]
Rossignoli, Filippo; Spano, Carlotta; Grisendi, Giulia; Foppiani, Elisabetta Manuela; Golinelli, Giulia; Mastrolia, Ilenia; Bestagno, Marco; Candini, Olivia; Petrachi, Tiziana; Recchia, Alessandra; Miselli, Francesca; Rovesti, Giulia; Orsi, Giulia; Veronesi, Elena; Medici, Gregorio; Petocchi, Benedetta; Pinelli, Massimo; Horwitz, Edwin M.; Conte, Pierfranco; Dominici, Massimo
File in questo prodotto:
File Dimensione Formato  
Rossignoli et al. Theranostics 2019.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1172561
Citazioni
  • ???jsp.display-item.citation.pmc??? 26
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 35
social impact