In this paper, a factor graph approach is employed to investigate the recursive filtering problem for conditionally linear Gaussian state-space models. First, we derive a new factor graph for the considered filtering problem; then, we show that applying the sum-product rule to our graphical model results in both known and novel filtering techniques. In particular, we prove that: 1) marginalized particle filtering can be interpreted as a form of forward only message passing over the devised graph; 2) novel filtering methods can be easily developed by exploiting the graph structure and/or simplifying probabilistic messages.
Marginalized Particle Filtering and Related Filtering Techniques as Message Passing / Vitetta, Giorgio M.; Sirignano, Emilio; DI VIESTI, Pasquale; Montorsi, Francesco; Sola, Matteo. - In: IEEE TRANSACTIONS ON SIGNAL PROCESSING. - ISSN 1053-587X. - 67:6(2019), pp. 1522-1536. [10.1109/TSP.2019.2893868]
Marginalized Particle Filtering and Related Filtering Techniques as Message Passing
Giorgio M. Vitetta
;Emilio Sirignano;DI VIESTI, PASQUALE;Francesco Montorsi;Matteo Sola
2019
Abstract
In this paper, a factor graph approach is employed to investigate the recursive filtering problem for conditionally linear Gaussian state-space models. First, we derive a new factor graph for the considered filtering problem; then, we show that applying the sum-product rule to our graphical model results in both known and novel filtering techniques. In particular, we prove that: 1) marginalized particle filtering can be interpreted as a form of forward only message passing over the devised graph; 2) novel filtering methods can be easily developed by exploiting the graph structure and/or simplifying probabilistic messages.File | Dimensione | Formato | |
---|---|---|---|
MPF_rev_v0.16.pdf
Accesso riservato
Descrizione: Articolo principale
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
2.21 MB
Formato
Adobe PDF
|
2.21 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
POST PRINT_Marginalized Particle Filtering and Related.pdf
Open access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
572.36 kB
Formato
Adobe PDF
|
572.36 kB | Adobe PDF | Visualizza/Apri |
VOR_Marginalized_Particle_Filtering_and_Related_Filtering_Techniques_as_Message_Passing.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.27 MB
Formato
Adobe PDF
|
1.27 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris