Classification methods, i.e., the chemometric strategies for predicting a qualitative response, find many applications in the omic sciences, where often data are collected in order to categorize individuals (e.g., according to whether they were treated or administered a placebo or, for instance, depending on if they were healthy or ill). After a brief discussion of the differences between discriminant and modeling approaches, some of the techniques most commonly used in the omic fields are illustrated in greater detail. A part of the chapter is then devoted to illustrating the strategies for identifying the most relevant features in model building through variable selection approaches, and their role in putative biomarker identification. Lastly, the importance of validation is also addressed and a brief guideline of the available strategies is presented.
Chemometric methods for classification and feature selection / Cocchi, Marina; Biancolillo, Alessandra; Marini, Federico. - 82(2018), pp. 265-299.
Data di pubblicazione: | 2018 |
Titolo: | Chemometric methods for classification and feature selection |
Autore/i: | Cocchi, Marina; Biancolillo, Alessandra; Marini, Federico |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/bs.coac.2018.08.006 |
Codice identificativo Scopus: | 2-s2.0-85053020346 |
Serie: | COMPREHENSIVE ANALYTICAL CHEMISTRY |
Titolo del libro: | Data Analysis for Omic Sciences: Methods and Applications |
A cura di: | Jaumot J., Bedia C., Tauler R. |
ISBN: | 9780444640444 |
Editore: | Elsevier |
Nazione editore: | PAESI BASSI |
Citazione: | Chemometric methods for classification and feature selection / Cocchi, Marina; Biancolillo, Alessandra; Marini, Federico. - 82(2018), pp. 265-299. |
Tipologia | Capitolo/Saggio |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
CAC82_ClassVSel.pdf | Versione dell'editore (versione pubblicata) | Embargo: 17/01/2022 Richiedi una copia |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris